首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5138篇
  免费   864篇
  国内免费   1112篇
化学   3227篇
晶体学   97篇
力学   537篇
综合类   70篇
数学   38篇
物理学   1836篇
无线电   1309篇
  2024年   10篇
  2023年   46篇
  2022年   124篇
  2021年   154篇
  2020年   185篇
  2019年   170篇
  2018年   126篇
  2017年   184篇
  2016年   217篇
  2015年   219篇
  2014年   225篇
  2013年   398篇
  2012年   377篇
  2011年   432篇
  2010年   355篇
  2009年   331篇
  2008年   346篇
  2007年   383篇
  2006年   369篇
  2005年   327篇
  2004年   290篇
  2003年   289篇
  2002年   274篇
  2001年   205篇
  2000年   181篇
  1999年   162篇
  1998年   127篇
  1997年   116篇
  1996年   106篇
  1995年   92篇
  1994年   62篇
  1993年   46篇
  1992年   34篇
  1991年   33篇
  1990年   22篇
  1989年   18篇
  1988年   20篇
  1987年   9篇
  1986年   5篇
  1985年   4篇
  1984年   10篇
  1983年   2篇
  1982年   5篇
  1980年   3篇
  1978年   2篇
  1975年   6篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有7114条查询结果,搜索用时 578 毫秒
211.
212.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   
213.
The influence of initial heat treatment on anomalous Cr precipitation within high temperature solubility region of the Fe–9Cr alloy has been investigated using positron lifetime studies. Air-quenched samples with pre-existing dislocations exhibited a distinct annealing stage in positron lifetime between 800 and 1100?K corresponding to Cr-precipitation. During this stage, Transmission Electron Microscopy showed fine precipitates of average size 4 nm, dispersed throughout the sample and from Energy-dispersive X-ray spectroscopy (EDS) analysis they are found to be Cr-enriched. The presence of dislocations is found to be responsible for Cr precipitation.  相似文献   
214.
Structural constraint represents an attractive tool to modify p-block element properties without the need for unusual oxidation or valence states. The recently reported methyl-calix[4]pyrrolato aluminate established the effect of forcing a tetrahedral aluminum anion into a square-planar coordination mode. However, the generality of this structural motif and any consequence of ligand modification remained open. Herein, a systematic ligand screening was launched, and the class of square-planar aluminum anions was extended by two derivatives that differ in the meso-substitution at the calix[4]pyrrolato ligand. Strikingly, this modification provoked opposing trends in the preference for a Lewis acidic binding mode with σ-donors versus the aluminum-ligand cooperative binding mode with carbonyls. Insights into the origin of these counterintuitive experimental observations were provided by computation and bond analysis. Importantly, this rationale might allow to exploit mode-selective binding for catalytic rate control.  相似文献   
215.
216.
This work aimed to tune the comprehensive properties of Fe-P-C-based amorphous system through investigating the role of microalloying process on the crystallization behavior,glass forming ability(GFA),soft magnetic features,and mechanical properties.Considering minor addition of elements into the system,it was found that the simultaneous microalloying of Ni and Co leads to the highest GFA,which was due to the optimization of compositional heterogeneity and creation of near-eutectic composition.Moreover,the FeCoNiCuPC amorphous alloy exhibited the best anelastic/viscoplastic behavior under the nanoindentation test,which was owing to the intensified structural fluctuations in the system.However,the improved plasticity by the extra Cu addition comes at the expense of magnetic properties,so that the saturation magnetization of this alloying system is significantly decreased compared to the FeCoPC amorphous alloy with the highest soft magnetic properties.In total,the results indicated that a combination of added elemental constitutes,i.e.,Fe69Co5Ni5Cu1P13C7 composition,provides an optimized state for the comprehensive properties in the alloying system.  相似文献   
217.
Asymmetric 1,2-additions of cyanide yield enantioenriched cyanohydrins as versatile chiral building blocks. Next to HCN, volatile organic cyanide sources are usually used. Among them, cyanoformates are more attractive on technical scale than TMSCN for cost reasons, but catalytic productivity is usually lower. Here, the development of a new strategy for cyanations is described, in which this activity disadvantage is overcome. A Lewis acidic Al center cooperates with an aprotic onium moiety within a remarkably robust bifunctional Al–F–salen complex. This allowed for unprecedented turnover numbers of up to 104. DFT studies suggest an unexpected unique trimolecular pathway in which the ammonium bound cyanide attacks the aldehyde, which itself is activated by the carbonyl group of the cyanoformate binding to the Al center. In addition, a novel practical carboxycyanation method was developed that makes use of KCN as the sole cyanide source. The use of a pyrocarbonate as carboxylating reagent provided the best results.  相似文献   
218.
《Physics letters. A》2020,384(20):126418
In this study, Cu-20wt.Sn alloy was produced by powder metallurgy (PM) method by using high purity element powders. The phases in the microstructure of the produced alloy were determined by XRD study. The phase transformation behaviour of the alloy was investigated by DSC and modelling method. Moreover, the Cu-20wt.Sn alloy system was modelled with molecular dynamics (MD) simulation based on modified Embedded Atom Method (MEAM). The radial distribution function (RDF) was calculated to determine the structural properties of system during the phase transformations. The experimental results showed that the transformation (α+δ) → (α+γ) occur at temperature above 500°C. The simulation results showed that the phase transformation α+δα+γ occurs at 550°C temperature. Our simulation results are in reasonable agreement with the experimental data.  相似文献   
219.
ABSTRACT

The effect of transition elements, specifically Mn, Cr, V, and Mo, on dispersoid formation and mechanical properties in 6082 aluminum alloy was studied. The elevated-temperature mechanical properties were evaluated based on the compressive yield strength and creep resistance. The results indicated that the addition of Mn to the 6082 alloy resulted in the formation of a large number of the thermally stable α-Al(MnFe)Si dispersoids, thereby significantly improving the elevated-temperature mechanical properties of the alloy. Subsequent additions of Cr, V, and Mo increased the amount of Mn-bearing intermetallic phases, which decreased the supersaturation levels of Mn and Si in the α-Al, and consequently decreased the volume fraction of the dispersoids. The alloys containing Cr, V, and Mo exhibited similar yield strengths at 300°C and higher yield strengths at room temperature compared to the alloy containing only Mn. The size effect of the smaller dispersoids containing Cr, V, and Mo together with the solid-solution hardening of these elements could balance out the strength decrease resulting from the decreased volume fraction of the dispersoids. The additions of Cr, V, and Mo significantly increased the creep resistance of the Mn-containing 6082 alloy. Vanadium induced the highest creep resistance followed by Cr and Mo. Solute atoms of these elements with low diffusivity in the aluminum matrix contributed significantly to increasing the creep resistance at 300°C.  相似文献   
220.
The development of cost-effective and durable oxygen electrocatalysts remains highly critical but challenging for energy conversion and storage devices. Herein, a novel FeNi alloy nanoparticle core encapsulated in carbon shells supported on a N-enriched graphene-like carbon matrix (denoted as FeNi@C/NG) was constructed by facile pyrolyzing the mixture of metal salts, glucose, and dicyandiamide. The in situ pyrolysis of dicyandiamide in the presence of glucose plays a significant effect on the fabrication of the porous FeNi@C/NG with a high content of doped N and large specific surface area. The optimized FeNi@C/NG catalyst displays not only a superior catalytic performance for the oxygen reduction reaction (ORR, with an onset potential of 1.0 V and half-wave potential of 0.84 V) and oxygen evolution reaction (OER, the potential at 10 mA cm−2 is 1.66 V) simultaneously in alkaline, but also outstanding long-term cycling durability. The excellent bifunctional ORR/OER electrocatalytic performance is ascribed to the synergism of the carbon shell and FeNi alloy core together with the high-content of nitrogen doped on the large specific surface area graphene-like carbon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号