首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1867篇
  免费   251篇
  国内免费   266篇
化学   1621篇
晶体学   1篇
力学   212篇
综合类   20篇
数学   66篇
物理学   191篇
无线电   273篇
  2024年   7篇
  2023年   30篇
  2022年   89篇
  2021年   113篇
  2020年   100篇
  2019年   87篇
  2018年   89篇
  2017年   109篇
  2016年   111篇
  2015年   113篇
  2014年   137篇
  2013年   193篇
  2012年   89篇
  2011年   139篇
  2010年   87篇
  2009年   122篇
  2008年   110篇
  2007年   95篇
  2006年   100篇
  2005年   62篇
  2004年   63篇
  2003年   58篇
  2002年   44篇
  2001年   29篇
  2000年   29篇
  1999年   29篇
  1998年   19篇
  1997年   27篇
  1996年   17篇
  1995年   13篇
  1994年   12篇
  1993年   14篇
  1992年   6篇
  1991年   12篇
  1990年   4篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1980年   1篇
  1957年   1篇
排序方式: 共有2384条查询结果,搜索用时 0 毫秒
81.
A vanillin cross-linked chitosan microsphere delivery system was established for stabilization and controlled release of pterostilbene. The prepared microspheres were characterized by SEM images, FT-IR spectra, thermogravimetry, and X-ray diffraction. FT-IR spectra results indicated that chitosan was cross-linked by vanillin successfully. Thermal analysis showed that pterostilbene had been totally incorporated into the microspheres and the encapsulation of pterostilbene decreases the rate of degradation and increases the stability. XRD analysis was conducted to confirm the results of DSC analysis. The release rate of pterostilbene from microspheres in pH 3.6 buffer solution could be up to 58.1 % within 48 h.  相似文献   
82.
A selective release system was demonstrated with a dual‐cargo loaded MSNs. When stimulated by different signals (UV or H+), this system could selectively release different kinds of cargoes individually. Furthermore, this system has been used to provide a combination of chemotherapy and biotherapy for cancer treatment. This controlled release system could be an important step in the development of more effective and sophisticated nanomedicine and nanodevices, due to the possibility of selective release of a complex multi‐drug.  相似文献   
83.
在乙醇-水混合体系中,以氨水为沉淀剂共沉淀合成了甲氨蝶呤/层状双金属氢氧化物(MTX/LDH)纳米复合物,采用控制水热处理时间的方式来调控其性能。利用X-射线衍射(XRD)、透射电镜(TEM)和红外光谱(FT-IR)等表征手段,对其结构及形貌进行了表征。研究表明:MTX分子以单层倾斜或垂直方式插入LDH层间,随着水热处理时间的不同,MTX在层间的倾斜角度发生了变化;水热处理时间对产物的结晶度、粒径和层间排列方式都有影响,当水热处理时间为12h时,得到的MTX/LDH纳米复合物的结晶度最高,单分散性最好。在磷酸缓冲液中考察了MTX/LDH纳米复合物的缓释性能,结果表明样品均呈现出良好的缓释性能,释放速率先快后慢。重点考察了这几种MTX/LDH纳米复合物作用于肺癌细胞A549的细胞生物实验,研究表明这几种复合物对肺癌细胞A549都具有良好的抑制作用,其效果与纳米复合物的单分散性和粒径有密切的关系,单分散性越好,粒径分布越均匀,对A549癌细胞的抑制效果越好。  相似文献   
84.
Understanding drug-release kinetics is critical for the development of drug-loaded nanoparticles. We developed a J-aggregate-based Förster-resonance energy-transfer (FRET) method to investigate the release of novel high-drug-loading (50 wt %) nanoparticles in comparison with low-drug-loading (0.5 wt %) nanoparticles. Single-dye-loaded nanoparticles form J-aggregates because of the high dye-loading (50 wt %), resulting in a large red-shift (≈110 nm) in the fluorescence spectrum. Dual-dye-loaded nanoparticles with high dye-loading using FRET pairs exhibited not only FRET but also a J-aggregate red-shift (116 nm). Using this J-aggregate-based FRET method, dye-core–polymer-shell nanoparticles showed two release processes intracellularly: the dissolution of the dye aggregates into dye molecules and the release of the dye molecules from the polymer shell. Also, the high-dye-loading nanoparticles (50 wt %) exhibited a slow release kinetics in serum and relatively quick release in cells, demonstrating their great potential in drug delivery.  相似文献   
85.
Radiation-induced cleavage for controlled release in vivo is yet to be established. We demonstrate the use of 3,5-dihydroxybenzyl carbamate (DHBC) as a masking group that is selectively and efficiently removed by external radiation in vitro and in vivo. DHBC reacts mainly with hydroxyl radicals produced by radiation to afford hydroxylation at para/ortho positions, followed by 1,4- or 1,6-elimination to rescue the functionality of the client molecule. The reaction is rapid and can liberate functional molecules under physiological conditions. This controlled-release platform is compatible with living systems, as demonstrated by the release of a rhodol fluorophore derivative in cells and tumor xenografts. The combined benefits of the robust caging group, the good release yield, and the independence of penetration depth make DHBC derivatives attractive chemical caging moieties for use in chemical biology and prodrug activation.  相似文献   
86.
Climate changes, emerging species of plant pests, and deficits of clean water and arable land have made availability of food to the ever-increasing global population a challenge. Excessive use of synthetic pesticides to meet ever-increasing production needs has resulted in development of resistance in pest populations, as well as significant ecotoxicity, which has directly and indirectly impacted all life-forms on earth. To meet the goal of providing safe, sufficient, and high-quality food globally with minimal environmental impact, one strategy is to focus on targeted delivery of pesticides using eco-friendly and biodegradable carriers that are derived from naturally available materials. Herein, we discuss some of the recent approaches to use biodegradable matrices in crop protection, while exploring their design and efficiency. We summarize by discussing associated challenges with the existing approaches and future trends that can lead the world to more sustainable agricultural practices.  相似文献   
87.
Limited tumor permeability of therapeutic agents is a great challenge faced by current cancer therapy methods. Herein, a kind of near infrared light (NIR)‐driven nanomotor with autonomous movement, targeted ability, hierarchical porous structure, multi‐drugs for cancer chemo/photothermal therapy is designed, prepared and characterized. Further, we establish a method to study the interaction between nanomotors and cells, along with their tumor permeability mechanism, including 2D cellular models, 3D multicellular tumor spheroids and in vivo models. In vivo tumor elimination results verify that the movement behaviour of the nanomotors can greatly facilitate them to eliminate tumor through multiple therapeutic methods. This work tries to establish systematic research and evaluation models, providing strategies to understand the relationship between motion behaviour and tumor permeation efficiency of nanomotors in depth.  相似文献   
88.
Water-dispersable products have been prepared from the reaction of magnesium acetate tetrahydrate with hydrogen peroxide at mole ratios of 1 : 2 to 1 : 40 to produce compositions with active oxygen or peroxide contents of 1–30%. The products are believed to be stoichiometric mixtures of HOO Mg OAc and HOO Mg OOH that vary in composition with the molar ratios used. These new compounds are hydrolytically stable at ambient temperatures for extended periods (at least 60 days) and thermally stable below 300°C. Pad-cure processes are described for applying the above reaction products as a dispersion in water or aqueous hydrogen peroxide or as a foam in aqueous hydrogen peroxide to impart antibacterial activity to celulosics, synthetic fibers and fiber blends. The textiles are treated with dispersions or foam containing 10–17% of the reaction products derived from mole ratios of 1 : 2 to 1 : 40 magnesium acetate tetrahydrate: hydrogen peroxide. On subsequent heating for 2–4 min at 120–150°C, washing and drying, the modified textiles contain durably bound active oxygen or peroxide (0.1–1.7%) that has activity against representative gram-positive and gramnegative bacteria for up to 50 launderings.  相似文献   
89.
Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.  相似文献   
90.
The sunscreen nanocapsules were successfully synthesized by the way of layer-by-layer self-assembly using charged droplets (prepared by emulsification of LAD-30, Tween-80 and EHA (2-Ethylhexyl-4-dimethylaminobenzoate)) as templates. Chitosan/sodium alginate/calcium chloride were selected as wall materials to wrap EHA. The emulsions with the ratio of Tween-80 to EHA (1:1) were stable. A stable NEI negative emulsion can be obtained when the ratio of Tween-80 and LAD-30 was 9:1. Chitosan solutions (50 kDa, 0.25 mg/mL) and sodium alginate solutions (0.5 mg/mL) were selected to prepare nanocapsules. The nanocapsules were characterized via some physico-chemical methods. Based on the synergistic effects of the electrostatic interaction between wall materials and emulsifiers, EHA was effectively encapsulated. DLS and TEM showed that the sunscreen nanocapsules were dispersed in a spherical shape with nano-size, with the increasing number of assembly layers, the size increased from 155 nm (NEI) to 189 nm (NEII) to 201 nm (NEIII) and 205 nm after solidification. The release studies in vitro showed sustained release behavior of the nanocapsules were observed with the increase of the number of deposition layers, implying a good coating effect. The sunscreen nanocapsules could control less than 50% the release of EHA after crosslinking of calcium chloride and sodium alginate, which also could effectively avoid the stimulation of the sun protection agent on the skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号