首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22072篇
  免费   4065篇
  国内免费   2574篇
化学   6297篇
晶体学   83篇
力学   820篇
综合类   187篇
数学   2448篇
物理学   4584篇
无线电   14292篇
  2024年   77篇
  2023年   396篇
  2022年   550篇
  2021年   871篇
  2020年   1089篇
  2019年   726篇
  2018年   656篇
  2017年   909篇
  2016年   1152篇
  2015年   1105篇
  2014年   1759篇
  2013年   1853篇
  2012年   1733篇
  2011年   1816篇
  2010年   1335篇
  2009年   1309篇
  2008年   1455篇
  2007年   1494篇
  2006年   1303篇
  2005年   1093篇
  2004年   945篇
  2003年   944篇
  2002年   773篇
  2001年   584篇
  2000年   513篇
  1999年   392篇
  1998年   286篇
  1997年   256篇
  1996年   247篇
  1995年   195篇
  1994年   151篇
  1993年   124篇
  1992年   133篇
  1991年   71篇
  1990年   58篇
  1989年   46篇
  1988年   53篇
  1987年   27篇
  1986年   34篇
  1985年   52篇
  1984年   27篇
  1983年   8篇
  1982年   32篇
  1981年   23篇
  1980年   11篇
  1979年   10篇
  1978年   7篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this study, silver nanoparticle (AgNP) synthesis was carried out using Onosma sericeum Willd. aqueous extract for the first time, with a simple, economical, and green method without the need for any other organic solvent or external reducing or stabilizing agent. A variety of AgNPs, all of different particle sizes, were synthesized by controlling the silver ion concentration, extract volume, temperature, and pH. It was determined that the optimum conditions for AgNP synthesis were 1 mM AgNO3, pH 8, 25 °C, 20 g/200 mL extract, silver nitrate, and extract ratio 5:1 (v/v). The AgNPs were defined using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The particle size distribution and zeta potential measurements of the AgNPs were measured using the dynamic light scattering (DLS) technique. It was determined that the AgNPs with a particle size of less than 10 nm showed a higher catalytic effect in the reduction of 2-nitrobenzenamine. It was also found that these nanoparticles had a cytotoxic effect on the MCF-7 breast cancer cell line depending on dosage and time. The resulting IC50 values were between 76.63 µg/mL and 169.77 µg/mL. Furthermore, the biosynthesized AgNPs showed effective antibacterial activity against the Acinetobacter baumannii bacteria. The results of the study showed that synthesized AgNPs can have a promising role in biomedical and nanobiotechnology applications.  相似文献   
992.
993.
The electrocatalytic nitrogen reduction reaction (NRR) is an alternative eco‐friendly strategy for sustainable N2 fixation with renewable energy. However, NRR suffers from sluggish kinetics owing to difficult N2 adsorption and N≡N cleavage. Now, nanoporous palladium hydride is reported as electrocatalyst for electrochemical N2 reduction under ambient conditions, achieving a high ammonia yield rate of 20.4 μg h?1 mg?1 with a Faradaic efficiency of 43.6 % at low overpotential of 150 mV. Isotopic hydrogen labeling studies suggest the involvement of lattice hydrogen atoms in the hydride as active hydrogen source. In situ Raman analysis and density functional theory (DFT) calculations further reveal the reduction of energy barrier for the rate‐limiting *N2H formation step. The unique protonation mode of palladium hydride would provide a new insight on designing efficient and robust electrocatalysts for nitrogen fixation.  相似文献   
994.
Inorganic hosts, such as SrB4O7 or certain nitrides, intrinsically stabilize Eu2+ even when the dopant is an Eu3+‐based precursor and reducing conditions are not employed in the synthesis. Although this concept is well known in the synthesis of phosphorescent materials, the mechanistic details are scarcely understood. Herein, we demonstrate that trapped charge carriers, such as color centers, can also act as redox partners to stabilize certain oxidation states of activators. Eu‐activated CsMgCl3 and CsMgBr3 are used as examples. Upon doping with EuCl3 and in the absence of reducing conditions during the synthesis, dominant cyan or green luminescence from Eu2+ ions was observed. Photoluminescence spectroscopy at 10 K revealed that the reduction is correlated to color centers localized at defects. Although defects are typically undesired in phosphors, we have shown that their role may be underestimated and they could be used on purpose in the preparation of selected inorganic phosphors.  相似文献   
995.
The chemical use of CO2 as an inexpensive, nontoxic C1 synthon is of utmost topical interest in the context of carbon capture and utilization (CCU). We present the merger of cobalt catalysis and electrochemical synthesis for mild catalytic carboxylations of allylic chlorides with CO2. Styrylacetic acid derivatives were obtained with moderate to good yields and good functional group tolerance. The thus‐obtained products are useful as versatile synthons of γ‐arylbutyrolactones. Cyclic voltammetry and in operando kinetic analysis were performed to provide mechanistic insights into the electrocatalytic carboxylation with CO2.  相似文献   
996.
The solar‐driven photocatalytic reduction of CO2 (CO2RR) into chemical fuels is a promising route to enrich energy supplies and mitigate CO2 emissions. However, low catalytic efficiency and poor selectivity, especially in a pure‐water system, hinder the development of photocatalytic CO2RR owing to the lack of effective catalysts. Herein, we report a novel atom‐confinement and coordination (ACC) strategy to achieve the synthesis of rare‐earth single erbium (Er) atoms supported on carbon nitride nanotubes (Er1/CN‐NT) with a tunable dispersion density of single atoms. Er1/CN‐NT is a highly efficient and robust photocatalyst that exhibits outstanding CO2RR performance in a pure‐water system. Experimental results and density functional theory calculations reveal the crucial role of single Er atoms in promoting photocatalytic CO2RR.  相似文献   
997.
998.
The storage of solar energy in battery systems is pivotal for a sustainable society, which faces many challenges. Herein, a Zn–air battery is constructed with two cathodes of poly(1,4‐di(2‐thienyl))benzene (PDTB) and TiO2 grown on carbon papers to sandwich a Zn anode. The PDTB cathode is illuminated in a discharging process, in which photoelectrons are excited into the conduction band of PDTB to promote oxygen reduction reaction (ORR) and raise the output voltage. In a reverse process, holes in the valence band of the illuminated TiO2 cathode are driven for the oxygen evolution reaction (OER) by an applied voltage. A record‐high discharge voltage of 1.90 V and an unprecedented low charge voltage of 0.59 V are achieved in the photo‐involved Zn–air battery, regardless of the equilibrium voltage. This work offers an innovative pathway for photo‐energy utilization in rechargeable batteries.  相似文献   
999.
The applications of the most promising Fe—N–C catalysts are prohibited by their limited intrinsic activities. Manipulating the Fe energy level through anchoring electron‐withdrawing ligands is found effective in boosting the catalytic performance. However, such regulation remains elusive as the ligands are only uncontrollably introduced oweing to their energetically unstable nature. Herein, we report a rational manipulation strategy for introducing axial bonded O to the Fe sites, attained through hexa‐coordinating Fe with oxygen functional groups in the precursor. Moreover, the O modifier is stabilized by forming the Fe?O?Fe bridge bond, with the approximation of two FeN4 sites. The energy level modulation thus created confers the sites with an intrinsic activity that is over 10 times higher than that of the normal FeN4 site. Our finding opens a novel strategy to manage coordination environments at an atomic level for high activity ORR catalysts.  相似文献   
1000.
A mesoporous TiO2?x material comprised of small, crystalline, vacancy‐rich anatase nanoparticles (NPs) shows unique optical, thermal, and electronic properties. It is synthesized using polymer‐derived mesoporous carbon (PDMC) as a template. The PDMC pores serve as physical barriers during the condensation and pyrolysis of a titania precursor, preventing the titania NPs from growing beyond 10 nm in size. Unlike most titania nanomaterials, during pyrolysis the NPs undergo no transition from the anatase to rutile phase and they become catalytically active reduced TiO2?x. When exposed to a slow electron beam, the NPs exhibit a charge/discharge behavior, lighting up and fading away for an average period of 15 s for an extended period of time. The NPs also show a 50 nm red‐shift in their UV/Vis absorption and long‐lived charge carriers (electrons and holes) at room temperature in the dark, even long after UV irradiation. The NPs as photocatalysts show a good activity for CO2 reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号