首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23138篇
  免费   4277篇
  国内免费   2665篇
化学   6373篇
晶体学   84篇
力学   829篇
综合类   187篇
数学   2448篇
物理学   5666篇
无线电   14493篇
  2024年   111篇
  2023年   418篇
  2022年   615篇
  2021年   939篇
  2020年   1138篇
  2019年   790篇
  2018年   716篇
  2017年   963篇
  2016年   1236篇
  2015年   1173篇
  2014年   1846篇
  2013年   1933篇
  2012年   1788篇
  2011年   1883篇
  2010年   1411篇
  2009年   1363篇
  2008年   1489篇
  2007年   1587篇
  2006年   1373篇
  2005年   1128篇
  2004年   972篇
  2003年   973篇
  2002年   796篇
  2001年   602篇
  2000年   533篇
  1999年   405篇
  1998年   292篇
  1997年   263篇
  1996年   254篇
  1995年   195篇
  1994年   151篇
  1993年   124篇
  1992年   133篇
  1991年   71篇
  1990年   58篇
  1989年   46篇
  1988年   53篇
  1987年   27篇
  1986年   34篇
  1985年   52篇
  1984年   27篇
  1983年   8篇
  1982年   32篇
  1981年   23篇
  1980年   11篇
  1979年   10篇
  1978年   7篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.  相似文献   
932.
Heteroatom-doped polymers or carbon nanospheres have attracted broad research interest. However, rational synthesis of these nanospheres with controllable properties is still a great challenge. Herein, we develop a template-free approach to construct cross-linked polyphosphazene nanospheres with tunable hollow structures. As comonomers, hexachlorocyclotriphosphazene provides N and P atoms, tannic acid can coordinate with metal ions, and the replaceable third comonomer can endow the materials with various properties. After carbonization, N/P-doped mesoporous carbon nanospheres were obtained with small particle size (≈50 nm) and high surface area (411.60 m2 g−1). Structural characterization confirmed uniform dispersion of the single atom transition metal sites (i.e., Co-N2P2) with N and P dual coordination. Electrochemical measurements and theoretical simulations revealed the oxygen reduction reaction performance. This work provides a solution for fabricating diverse heteroatom-containing polymer nanospheres and their derived single metal atom doped carbon catalysts.  相似文献   
933.
The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d-band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 μg mgcat−1 h−1 under ambient conditions. The strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron-deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by >44-fold compared to without ZIF (ca. 1 %). The Pt/Au-NZIF interaction is key to enable strong N2 adsorption over H atom.  相似文献   
934.
Single-atom catalysts (SACs) are of great interest because of their ultrahigh activity and selectivity. However, it is difficult to construct model SACs according to a general synthetic method, and therefore, discerning differences in activity of diverse single-atom catalysts is not straightforward. Herein, a general strategy for synthesis of single-atom metals implanted in N-doped carbon (M1-N-C; M=Fe, Co, Ni and Cu) has been developed starting from multivariate metal–organic frameworks (MOFs). The M1-N-C catalysts, featuring identical chemical environments and supports, provided an ideal platform for differentiating the activity of single-atom metal species. When employed in electrocatalytic CO2 reduction, Ni1-N-C exhibited a very high CO Faradaic efficiency (FE) up to 96.8 % that far surpassed Fe1-, Co1- and Cu1-N-C. Remarkably, the best-performer, Ni1-N-C, even demonstrated excellent CO FE at low CO2 pressures, thereby representing a promising opportunity for the direct use of dilute CO2 feedstock.  相似文献   
935.
Efficient electron communication between molecular catalyst and support is critical for heterogeneous molecular electrocatalysis and yet it is often overlooked during the catalyst design. Taking CO2 electro-reduction on tetraphenylporphyrin cobalt (PCo) immobilized onto graphene as an example, we demonstrate that adding a relay molecule improves the interfacial electron communication. While the directly immobilized PCo on graphene exhibits relatively poor electron communications, it is found that diphenyl sulfide serves as an axial ligand for PCo and it improves the redox activity of PCo on the graphene surface to facilitate the generation of [PCo].- active sites for CO2 reduction. Thus, the turnover frequencies of the immobilized Co complexes are increased. Systematic structural analysis indicates that the benzene rings of diphenyl sulfide exhibit strong face-to-face stacking with graphene, which is proposed as an efficient medium to facilitate the interfacial electron communication.  相似文献   
936.
A general graphene quantum dot-tethering design strategy to synthesize single-atom catalysts (SACs) is presented. The strategy is applicable to different metals (Cr, Mn, Fe, Co, Ni, Cu, and Zn) and supports (0D carbon nanosphere, 1D carbon nanotube, 2D graphene nanosheet, and 3D graphite foam) with the metal loading of 3.0–4.5 wt %. The direct transmission electron microscopy imaging and X-ray absorption spectra analyses confirm the atomic dispersed metal in carbon supports. Our study reveals that the abundant oxygenated groups for complexing metal ions and the rich defective sites for incorporating nitrogen are essential to realize the synthesis of SACs. Furthermore, the carbon nanotube supported Ni SACs exhibits high electrocatalytic activity for CO2 reduction with nearly 100 % CO selectivity. This universal strategy is expected to open up new research avenues to produce SACs for diverse electrocatalytic applications.  相似文献   
937.
Previous density-functional theory (DFT) calculations show that sub-nanometric Cu clusters (i.e., 13 atoms) favorably generate CH4 from the CO2 reduction reaction (CO2RR), but experimental evidence is lacking. Herein, a facile impregnation-calcination route towards Cu clusters, having a diameter of about 1.0 nm with about 10 atoms, was developed by double confinement of carbon defects and micropores. These Cu clusters enable high selectivity for the CO2RR with a maximum Faraday efficiency of 81.7 % for CH4. Calculations and experimental results show that the Cu clusters enhance the adsorption of *H and *CO intermediates, thus promoting generation of CH4 rather than H2 and CO. The strong interactions between the Cu clusters and defective carbon optimize the electronic structure of the Cu clusters for selectivity and stability towards generation of CH4. Provided here is the first experimental evidence that sub-nanometric Cu clusters facilitate the production of CH4 from the CO2RR.  相似文献   
938.
Hydride abstraction from the heterocyclic carbene borane adducts (NHC)BH2C6F5 (NHC: IMes or IMe4) gave the B−H containing [(NHC)B(H)C6F5]+ borenium cations. They added carbon monoxide to give the respective [(NHC)B(H)(C6F5)CO]+ boron carbonyl cations. Carbon nucleophiles add to the boron carbonyl to give [B](H) acyls. Hydride reduced the [B]CO cation to hydroxymethylborane derivatives.  相似文献   
939.
Pyrite acts as a catalyst in the mineral processing, and the speed of ferric ion reduction and mineral decomposition increases with increasing cathodic points. In this study, the ferric ion interaction on the (100) and (110) surfaces of pyrite was studied using the density functional theory calculations. The analysis of stability, density of states, and electron density were performed to understand the interaction between the ferric ion and pyrite surfaces. The results showed that pyrite surface is chemically active and tends to absorb ferric ion between two surface sulfur atoms. The hyperconjugation between the 3d orbital of ferric ion and the 3p or 3d orbitals of surface atoms provides the conditions for the Fe3+ ion adsorption. The molecular orbital (MO) and electron density analyses indicate that the 3p orbitals of S atoms play a more important role in bonds formations relative to the 3d orbitals. The (110) surface is more active, and the adsorption energy is larger than that of surface (100), which is the result of decreased cation coordination and the presence of sulfur at the surface. Subsequently, the interaction of the Fe2+ ion, as product of Fe3+ ion reduction and its competitor for adsorption, on the surfaces was studied. The Fe2 + ion adsorbs stronger at the surface of (110), and the adsorption energies at (100) and (110) surfaces were obtained as −24 and −47 kcal/mol, respectively. In general, the Fe3+ ion is a stronger oxidizing agent than Fe2+ on pyrite surfaces.  相似文献   
940.
系统总结了作为柴油车尾气消除反应(NH3-SCR)催化材料的八元环沸石分子筛(CHA, AEI, RTH)的研究进展, 讨论了不同方法合成的八元环沸石分子筛在NH3-SCR反应中的性能差异, 并对未来八元环分子筛的发展趋势进行了展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号