首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6029篇
  免费   894篇
  国内免费   265篇
化学   475篇
晶体学   15篇
力学   401篇
综合类   44篇
数学   229篇
物理学   983篇
无线电   5041篇
  2024年   40篇
  2023年   109篇
  2022年   177篇
  2021年   201篇
  2020年   198篇
  2019年   129篇
  2018年   167篇
  2017年   216篇
  2016年   223篇
  2015年   285篇
  2014年   389篇
  2013年   471篇
  2012年   434篇
  2011年   483篇
  2010年   355篇
  2009年   325篇
  2008年   390篇
  2007年   416篇
  2006年   399篇
  2005年   310篇
  2004年   269篇
  2003年   267篇
  2002年   215篇
  2001年   156篇
  2000年   108篇
  1999年   73篇
  1998年   77篇
  1997年   54篇
  1996年   46篇
  1995年   44篇
  1994年   33篇
  1993年   25篇
  1992年   22篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1988年   12篇
  1987年   3篇
  1986年   3篇
  1985年   9篇
  1984年   3篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1969年   1篇
  1957年   1篇
排序方式: 共有7188条查询结果,搜索用时 15 毫秒
51.
We report a common HPLC method for the single or simultaneous determination of four calcium channel blockers (CCB), namely diltiazem (DTZ), verapamil (VER), nifedipine (NIF) and nitrendipine (NIT) and their active metabolites demetildiltiazem and deacetildiltiazem (MA and M1), norverapamil (NOR), and dehydronifedipine (DHN). DHN was first synthesised in our laboratory and different pH values of the mobil phase were subsequently prepared and tested for chromatographic separation. The detection system and the environmental light conditions were optimised. The best separations of all analytes were obtained using a C18 column and a mobile phase of methanol, 0.04 M ammonium acetate, acetonitrile and triethylamine (2:2:1:0.04 v/v). Quantitation was performed using imipramine (IMI) as the internal standard. For DTZ and its metabolites (M1 and MA), the wavelength chosen was 237 nm; for VER and its metabolite NOR, it was 210 nm; and, finally for NIF and its metabolite DHN and NIT it was 216 nm. When a simultaneous analysis was carried out the wavelength was of 230 nm. The optimum pH were 7.90 and 7.10 when the separation of NIT and DTZ or VER and NIF were carried out, respectively, and 7.90 when a simultaneous separation was carried out. The detection limit of the assay was less than 8 ng ml−1 for all compounds, with coefficients of variation less than 7% (for inter- and intra-day) over the concentration range of 1–1000 ng ml−1. The retention times were less than 11 min. When NIF or NIT were studied, it was necessary to use a sodium vapour lamp in order to avoid the photodegradation which takes place under daylight conditions.  相似文献   
52.
Biological applications of infrared spectroscopy have pressed for ever greater instrumental capabilities in terms of spectral sensitivity and quantitative exactness. Improved instrumentation has provided measurement of many vibrational modes in biological samples that previously were lost in noise. With highly optimized sampling conditions, useful measurements have been made with a peak-to-peak noise level less than 5 microabsorbance (5×10–6 absorbance), at 0.5 cm–1 resolution. However, optical and instrumental instabilities often result in sine waves that are not totally removed by the ratio of sample to reference. These often limit effective spectral sensitivity to 50 or 100 microabsorbance, peak-to-peak, and constitute a non-random noise. Non-atmospheric absorptions, especially one at 1959 cm–1 with 0.8 cm–1 band width (FWHM) are reported. The latter is due to a trace impurity in the KBr beam splitter substrate and compensator plate. Improvements in instrumentation and sampling conditions are expected to yield measurements of absorption bands as small as 50 microabsorbance with excellent signal/noise.  相似文献   
53.
The electroosmotic peristaltic flow of modified hybrid nanofluid in presence of entropy generation has been presented in this thermal model. The Hall impact and thermal radiation with help of nonlinear relations has also been used to modify the analysis. The assumed flow is considered due to a non-uniform trapped channel. The properties of modified hybrid nanofluid model are focused with interaction of three distinct types of nanoparticles namely copper (Cu), silver (Ag) and aluminum oxide (Al2O3). The mathematical modeling and significances of entropy generation and Bejan number are identified. With certain flow assumptions, the governing equations are attained for optimized peristaltic electroosmotic problem. Widely used assumptions of long wave length and low Reynolds number reduced the governing equations in ordinary differential equations. The ND solver is flowed for the solution process. The physical significant of results is observed by assigning the numerical values to parameters.  相似文献   
54.
Lipophilicity, often expressed as distribution coefficients (log D) in octanol/water, is an important physicochemical parameter influencing processes such as oral absorption, brain uptake and various pharmacokinetic (PK) properties. Increasing log D values increases oral absorption, plasma protein binding and volume of distribution. However, more lipophilic compounds also become more vulnerable to P450 metabolism, leading to higher clearance. Molecular size and hydrogen bonding capacity are two other properties often considered as important for membrane permeation and pharmacokinetics. Interrelationships among these physicochemical properties are discussed. Increasing size (molecular weight) often gives higher potency, but inevitably also leads to either higher lipophilicity, and hence poorer dissolution/solubility, or to more hydrogen bonding capacity, which limits oral absorption. Differences in optimal properties between gastrointestinal absorption and uptake into the brain are addressed. Special attention is given to the desired lipophilicity of CNS drugs. In examples using -blockers, Ca channel antagonists and peptidic renin inhibitors we will demonstrate how potency and pharmacokinetic properties need to be balanced.  相似文献   
55.
56.
1,3-Benzenediamine,N,N′-bis(4,6-dichloro-1,3,5-triazine-2-yl) and 1,3,5-Triazine,2,2′-[2-methyl-1,3-phenylenebis(oxy)] bis(4,6-dichloro) were synthesized as host molecules. The inclusion compound of 1,3-Benzenediamine,N,N′-bis(4,6-dichloro-1,3,5-triazine-2-yl) crystallizes in the monoclinic crystal system in space group C2/c. The host molecule occupies the space group 2-fold special position and packed in the crystal lattice in such a manner as to leave channels running along the c axis of a rectangular cross-section. It crystallizes with two molecules of acetone that are hydrogen bonded to the amino nitrogen atoms. Molecules of 1,3,5-Triazine,2,2′-[2-methyl-1,3-phenylene bis(oxy)]bis(4,6-dichloro) are packed in the crystal in such a manner as to leave channels of a trapezoid cross-section that are running along the a axis. Guest molecules such as metanol, ethanol, and ethyl acetate can be used to fill the channels. The crystal structures of two inclusion compounds are described.  相似文献   
57.
Simulations of coupled interactions involving two opposite enzymatic reactions, solute diffusions, and electrostatic interactions between membrane charges and charged solutes were conducted under a fixed kinase-channel-phosphatase (KCP) topology oriented from the outside to the inside of a porous membrane structure. Depending on the kinase and phosphatase locations, we recently demonstrated that an active transport of a phosphorylated substrate may occur via the opposite topology, that is, a PCK topology. The present analysis demonstrates that, under a KCP membrane topology, which also behaves as a specific ATP-dependent transporter, the active transport of a neutral substrate may occur. This analogous active transport appears to be dependent on the phosphatase location and on the membrane surface potentials. A broad analysis of the role played by the main parameters taken into account in the model was conducted in order to define precisely the physico-chemical conditions and the membrane topology needed for the highest active transports within the shortest time.  相似文献   
58.
Summary A structure-activity relationship study has been done on 8 compounds with the activity known as Ca2+ channel blockers. Conformational analysis was carried out using a molecular mechanics method. The 3D-QSAR approach was used and the most polar functional groups present in all the molecules were considered. Eight interatomic distances are necessary to define the relative spatial disposition of these relevant molecular fragments. The structure-activity relationship between interatomic distances and biological activity was performed using statistic and chemometric methods. In particular, with Principal Component Analysis, it was possible to reduce the number of interatomic distances: only six of the eight distances are sufficient to describe the system in a useful way. A classification method was iteratively used to select the most probable conformations linked to the biological activity and to build a model able to classify conformations according to their biological behaviour. Cluster analysis on the active selected conformations subsequently allowed the identification of two different geometrical patterns for the active compounds. Finally the validity of the model was verified by correctly predicting the activity of other molecules not used in the construction of the model but possessing known activity.  相似文献   
59.
An approach to a transmembrane cation channel is described. It is based on the grafting of oxygen bearing side-chains on a macrocyclic polyether unit that constitutes the organizing core. The resulting species has a structure of overall bouquet shape. The synthesis of such a molecule . M 0 ,14a is described, together with that of its analogue bearing polymethylene side-chains M C ,14b. The physicochemical properties of these molecules indicate that they possess the features expected on the basis of their structure.This paper is dedicated to the memory of the late Dr C. J. Pedersen.  相似文献   
60.
最近几年,人们进行了许多超宽带信道模型的室内试验,提出了几种反映超宽带信道特性的模型.文中给出了路径损耗模型、修正的泊松模型、Δ-K模型、S-V模型模型、2簇模型和IEEE 802.15.3a标准模型等模型及其参数特征和优缺点,并分析了今后超宽带模型建模应该注意的问题.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号