首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1589篇
  免费   29篇
  国内免费   185篇
化学   1225篇
晶体学   10篇
力学   22篇
综合类   2篇
数学   11篇
物理学   448篇
无线电   85篇
  2024年   2篇
  2023年   62篇
  2022年   58篇
  2021年   29篇
  2020年   48篇
  2019年   36篇
  2018年   29篇
  2017年   35篇
  2016年   44篇
  2015年   32篇
  2014年   76篇
  2013年   73篇
  2012年   76篇
  2011年   117篇
  2010年   90篇
  2009年   99篇
  2008年   117篇
  2007年   103篇
  2006年   131篇
  2005年   101篇
  2004年   57篇
  2003年   49篇
  2002年   44篇
  2001年   43篇
  2000年   32篇
  1999年   31篇
  1998年   30篇
  1997年   22篇
  1996年   16篇
  1995年   22篇
  1994年   22篇
  1993年   11篇
  1992年   12篇
  1991年   9篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1967年   3篇
排序方式: 共有1803条查询结果,搜索用时 625 毫秒
151.
The purpose of this study has been to advance in knowledge of the chemical composition, structure and thickness of the thin native oxide film formed spontaneously in contact with the laboratory atmosphere on the surface of freshly polished commercial AZ31 and AZ61 alloys with a view to furthering the understanding of protection mechanisms. For comparative purposes, and to more fully describe the behaviour of the native oxide film, the external oxide films formed as a result of the manufacturing process (as-received condition) have been characterised. The technique applied in this research to study the thin oxide films (thickness of just a few nanometres) present on the surface of the alloys has basically been XPS (X-ray photoelectron spectroscopy) in combination with ion sputtering. Corrosion properties of the alloys were studied in 0.6 M NaCl by measuring charge transfer resistance values, which are deduced from EIS (electrochemical impedance spectroscopy) measurements after 1 h of exposure. Alloy AZ61 generally showed better corrosion resistance than AZ31, and the freshly polished alloys showed better corrosion resistance than the alloys in as-received condition. This is attributed to a combination of (1) higher thickness of the native oxide film on the AZ61 alloy and (2) greater uniformity of the oxide film in the polished condition. The formation of an additional oxide layer composed by a mixture of spinel (MgAl2O4) and MgO seems to diminish the protective properties of the passive layer on the surface of the alloys in as-received condition.  相似文献   
152.
Hexamethyldisiloxane (HMDSO) films have been deposited on bell metal using radiofrequency plasma assisted chemical vapor deposition (RF-PACVD) technique. The protective performances of the HMDSO films and their water repellency have been investigated as a function of DC self-bias voltage on the substrates during deposition. Plasma potential measurements during film deposition process are carried out by self-compensated emissive probe. Optical emission spectroscopy (OES) analyses of the plasma during deposition reveal no significant change in the plasma composition within the DC self-bias voltage range of −40 V to −160 V that is used. Raman and X-ray photoelectron spectroscopy (XPS) studies are carried out for film chemistry analysis and indicate that the impinging ion energy on the substrates influences the physio-chemical properties of the HMDSO films. At critical ion energy of 113 qV (corresponding to DC self-bias voltage of −100 V), the deposited HMDSO film exhibits least defective Si-O-Si chemical structure and highest inorganic character and this contributes to its best corrosion resistance behavior. The hardness and elastic modulus of the films are found to be bias dependent and are 1.27 GPa and 5.36 GPa for films deposited at −100 V. The critical load for delamination is also bias dependent and is 11 mN for this film. The water repellency of the HMDSO films is observed to be dependent on the variation in surface roughness. The results of the investigations suggest that HMDSO films deposited by RF-PACVD can be used as protective coatings on bell metal surfaces.  相似文献   
153.
A nanostructured layer was fabricated by using fast multiple rotation rolling (FMRR) on the surface of 316L stainless steel. The microstructure in the surface was characterized by transmission electron microscopy and X-ray diffraction. The effects of FMRR on the microhardness, surface roughness and corrosion behavior of the stainless steel were investigated by microhardness measurements, surface roughness measurements, potentiodynamic polarization curves and pitting corrosion tests. The surface morphologies of pitting corrosion specimens were characterized by scanning electron microscopy. The results show that FMRR can cause surface nanocrystallization with the grain size ranges from 6 to 24 nm in the top surface layer of the sample. The microhardness of FMRR specimen in the top surface layer remarkably increases from 190 to 530 HV. However, the surface roughness slightly rises after FMRR treatment. The potentiodynamic polarization curves and pitting corrosion tests indicated that the FMRR treated 316L stainless steel with a surface nanocrystallized layer reduced the corrosion resistance in a 3.5% NaCl solution and enhanced the pitting corrosion rate in a FeCl3 solution. Possible reasons leading to the decrease in corrosion resistance were discussed.  相似文献   
154.
In order to improve the bioactivity of the micro-arc oxidized magnesium, a calcium phosphate coating was formed on the surface of micro-arc oxidized magnesium using a chemical method. The microstructures of the substrate and the calcium phosphate coating before and after the simulated body fluids (SBF) incubation were characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy and scanning electron microscopy. The results showed that the calcified coating was composed of calcium deficient hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). After SBF incubation, some new apatite formation on the calcified coating surface from SBF could be found. The corrosion behaviours of the samples in SBF were also investigated by potentiodynamic polarization curves and immersion tests. The results showed that calcium phosphate coating increased the corrosion potential, and decreased the hydrogen gas release.  相似文献   
155.
Porous anodic alumina is an important nanoscale template for fabrication of various nanostructures. We report a new ultrasound-assisted anodization process in oxalic acid. Under the continuous irradiation of ultrasound, the one-step-anodized sample has a smooth and clean surface, and two-step-anodization brings ordered porous anodic alumina with higher growth rate of 52 μm/h. The ultrasound applied during the anodization can clean the surface and enhance the nanopore growth since it can accelerate the oxide dissolving on the electrolyte/oxide interface. The ultrasound-assisted anodization may be utilized for other anodizations.  相似文献   
156.
Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied.Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.  相似文献   
157.
Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.  相似文献   
158.
Development of the anticorrosion coatings on metals having both passive matrix functionality and active response to changes in the aggressive environment has raised tremendous interest in material science. Using a sol-gel deposition method, superhydrophobic copper substrate could be obtained. The best hydrophobic coating sol was prepared with methyltriethoxysilane (MTES), methanol (MeOH), and water (as 7 M NH4OH) at a molar ratio of 1:19.1:4.31 respectively. The surface morphological study showed the ball like silica particles distributed on the copper substrate with particle sizes ranging from 8 to 12 μm. The coatings showed the static water contact angle as high as 155° and the water sliding angle as low as 7°. The superhydrophobic nature was maintained even though the deposited copper substrate was soaked for 100 h in 50% of HCl solution. The coatings are stable against humidity and showed superhydrophobic behavior even after 90 days of exposure. The coatings are mechanically stable and water drops maintained the spherical shape on the bent copper substrate, which was bent more than 90°.  相似文献   
159.
Producing titania and hydroxyapatite (HA) bioceramic coating on titanium alloys increases corrosion resistance and biocompatibility of these alloys. Plasma electrolytic oxidation (PEO) is one of the effective techniques for producing this type of coating. This method produces coatings with enough thickness and appropriate adhesion. In this study, titania and HA were directly produced on Ti-6Al-4V by applying PEO process in a Ca- and P-containing electrolyte by changing voltage and time parameters. Morphology and cross section, chemical composition and elements of coatings were investigated by scanning electron microscope, X-ray diffraction and energy dispersive spectroscopy, respectively. Corrosion behavior of the samples was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. The results indicated that the formation of HA phase with titania needs a minimum voltage below which HA is not formed. By increasing the operation time, the amount of the formed HA increased. Also, the sample coated at 500 V and 15 min showed the best corrosion behavior in Ringer's solution.  相似文献   
160.
Bulk ultrafine-grained Ni50.8Ti49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential (Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号