首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   18篇
  国内免费   6篇
化学   14篇
晶体学   22篇
力学   53篇
数学   7篇
物理学   198篇
无线电   118篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   6篇
  2016年   24篇
  2015年   18篇
  2014年   8篇
  2013年   83篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   18篇
  2008年   16篇
  2007年   20篇
  2006年   14篇
  2005年   13篇
  2004年   8篇
  2003年   13篇
  2002年   7篇
  2001年   11篇
  2000年   14篇
  1999年   4篇
  1998年   16篇
  1997年   10篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
41.
A constitutive crystal plasticity model is proposed and developed for the inelastic deformation of irradiated bcc ferritic/martensitic steels. Defects found in these irradiated materials are used as substructure variables in the model. Insights from lower length- and time-scale simulations are used to frame the kinematic and substructure evolution relations of the governing deformation mechanisms. Models for evolution of mobile and immobile dislocations, as well as interstitial loops (formed due to irradiation), are developed. A rate theory-based approach is used to model the evolution of point defects generated during irradiation. The model is used to simulate the quasi-static tensile and creep response of a martensitic steel over a range of loading histories.  相似文献   
42.
Markus Lazar 《哲学杂志》2013,93(25):2840-2874
In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot–Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach–Koehler stress equation, Peach–Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.  相似文献   
43.
Abstract

Classical meso-scale models for dislocation–obstacle interactions have, by and large, assumed a random distribution of obstacles on the glide plane. While a good approximation in many situations, this does not represent materials where obstacles are clustered on the glide plane. In this work, we have investigated the statistical problem of a dislocation sampling a set of clustered point obstacles in the glide plane using a modified areal-glide model. The results of these simulations show two clear regimes. For weak obstacles, the spatial distribution does not matter and the critically resolved shear stress is found to be independent of the degree of clustering. In contrast, above a critical obstacle strength determined by the degree of clustering, the critical resolved shear strength becomes constant. It is shown that this behaviour can be explained semi-analytically by considering the probability of interaction between the dislocation line and obstacles at a given level of stress. The consequences for alloys exhibiting solute clustering are discussed.  相似文献   
44.
45.
Shockley partial dislocations in 4H-SiC were observed using monochromatic synchrotron X-ray topography with a grazing-incidence Bragg-case geometry, that is, Berg–Barrett topography. The contrast of partial dislocations at the edges of Shockley-type stacking faults is discussed in terms of whether they have C- or Si-core edge components, or screw components. The dissociated state of basal-plane dislocation is discussed on a basis of the stacking sequence for basal-planes in the 4H-SiC crystal structure. It is expected that the results obtained in this study will be useful for characterizing Shockley-type stacking faults in Berg–Barrett topography.  相似文献   
46.
Previous studies have revealed that dislocation structures in metals with medium-to-high stacking fault energy, depend on the grain orientation and therefore on the slip systems. In the present work, the dislocations in eight slip-plane-aligned geometrically necessary boundaries (GNBs) in three grains of near 45° ND rotated cube orientation in lightly rolled pure aluminium are characterized in great detail using transmission electron microscopy. Dislocations with all six Burgers vectors of the ½?1?1?0? type expected for fcc crystals were observed but dislocations from the four slip systems expected active dominate. The dislocations predicted inactive are primarily attributed to dislocation reactions in the boundary. Two main types of dislocation networks in the boundaries were identified: (1) a hexagonal network of the three dislocations in the slip plane with which the boundary was aligned; two of these come from the active slip systems, the third is attributed to dislocation reactions (2) a network of three dislocations from both of the active slip planes; two of these react to form Lomer locks. The results indicate a systematic boundary formation process for the GNBs. Redundant dislocations are not observed in significant densities.  相似文献   
47.
The distribution of variants and three-dimensional (3D) configurations of the heterogeneously formed S (Al2CuMg) precipitates at dislocations, grain boundaries and the Al20Cu2Mn3 dispersoid/Al interfaces were studied in this research. By means of high resolution transmission electron microscopy, we systematically investigated the orientation relationships (ORs) between these heterogeneously formed S precipitates and the Al matrix, and further unraveled that the preferred orientation of S variants at grain boundaries and at dispersoid/Al interfaces are respectively associated with the OR between the precipitate habit plane and the grain boundary plane, and the OR between the precipitate habit plane and the interface plane. The inherent characteristic of the crystal structure of the S phase, i.e. the symmetry of the pentagonal subunit, was considered to be the fundamental factor determining the preference of the variant pair. By using high angle annular dark field scanning transmission electron microscopy tomography, we successively obtained the 3D reconstruction of the S precipitates at these defects. Both the morphology of an individual S precipitate and the overall configuration of the S precipitates nucleated at these defects can be clearly observed without misunderstandings induced by the overlap and projection effects of the conventional two-dimensional methods.  相似文献   
48.
Abstract

Dislocations in shock loaded tantalum single crystals were imaged using both transmission electron microscope (TEM) and electron channelling contrast image (ECCI) in a scanning electron microscope with a conventional backscattered electron detector. The results were compared with backscattered electron intensity profiles across dislocations calculated via the dynamic theory of electron diffraction. A one-to-one correspondence between ECCI and TEM is established. High voltage and low index reflections should be used to obtain the highest dislocation contrast and greatest imaging depth.  相似文献   
49.
We derive conservation and balance laws for the translational gauge theory of dislocations by applying Noether's theorem. We present an improved translational gauge theory of dislocations including the dislocation density tensor and the dislocation current tensor. The invariance of the variational principle under the continuous group of transformations is studied. Through Lie's infinitesimal invariance criterion we obtain conserved translational and rotational currents for the total Lagrangian made up of an elastic and dislocation part. We calculate the broken scaling current. Looking only on one part of the whole system, the conservation laws are changed into balance laws. Because of the lack of translational, rotational and dilatation invariance for each part, a configurational force, moment and power appears. The corresponding J , L and M integrals are obtained. Only isotropic and homogeneous materials are considered and we restrict ourselves to a linear theory. We choose constitutive laws for the most general linear form of material isotropy. Also we give the conservation and balance laws corresponding to the gauge symmetry and the addition of solutions. From the addition of solutions we derive a reciprocity theorem for the gauge theory of dislocations. Also, we derive the conservation laws for stress-free states of dislocations.  相似文献   
50.
This “in situ” and real time study is an approach to the role of matrix dislocations in the nucleation of the α or β phases in titanium single crystals. When the dislocations interact, forming tangles, subboundaries…, the residual stresses, present at the transformation temperature, trigger the new phase. If the dislocations are isolated at the transformation temperature they are destabilized by the large crystalline anisotropy resulting from the vibrational entropy dependence with the temperature. These dislocations disappear and do no act as preferential nucleation sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号