首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   18篇
  国内免费   6篇
化学   14篇
晶体学   22篇
力学   53篇
数学   7篇
物理学   198篇
无线电   118篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   6篇
  2016年   24篇
  2015年   18篇
  2014年   8篇
  2013年   83篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   18篇
  2008年   16篇
  2007年   20篇
  2006年   14篇
  2005年   13篇
  2004年   8篇
  2003年   13篇
  2002年   7篇
  2001年   11篇
  2000年   14篇
  1999年   4篇
  1998年   16篇
  1997年   10篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
排序方式: 共有412条查询结果,搜索用时 10 毫秒
11.
12.
A study of the indentation size effect (ISE) in aluminum and alpha brass is presented. The study employs rate effects to examine the fundamental mechanisms responsible for the ISE. These rate effects are characterized in terms of the rate sensitivity of the hardness, , where H is the hardness and is an effective strain rate in the plastic volume beneath the indenter. can be measured using indentation creep, load relaxation, or rate change experiments. The activation volume V∗, calculated based on which can traditionally be used to compare rate sensitivity data from a hardness test to conventional uniaxial testing, is calculated. Using materials with different stacking fault energy and specimens with different levels of work hardening, we demonstrate how increasing the dislocation density affects V∗; these effects may be taken as a kinetic signature of dislocation strengthening mechanisms. We noticed both H and exhibit an ISE. The course of V∗ vs. H as a result of the ISE is consistent with the course of testing specimens with different level of work hardening. This result was observed in both materials. This suggests that a dislocation mechanism is responsible for the ISE. When the results are fitted to a strain gradient plasticity model, the data at deep indents (microhardness and large nanoindentation) exhibit a straight-line behavior closely identical to literature data. However, for shallow indents (nanoindentation data), the slope of the line severely changes, decreasing by a factor of 10, resulting in a “bilinear behavior”.  相似文献   
13.
A chemical vapor deposition (CVD) system was designed and fabricated in our laboratory and SiC homo-epitaxial layers were grown in the CVD process using silicon tetrachloride and propane precursors with hydrogen as a carrier gas. The temperature field was generated using numerical modeling. Gas flow rates, temperature field, and the gradients are found to influence the growth rates of the epitaxial layers. Growth rates were found to increase as the temperature increased at high carrier gas flow rate, while at lower carrier gas flow rate, growth rates were observed to decrease as the temperature increased. Based on the equilibrium model, “thermodynamically controlled growth” accounts for the growth rate reduction. The grown epitaxial layers were characterized using various techniques. Reduction in the threading screw dislocation (SD) density in the epilayers was observed. Suitable models were developed for explaining the reduction in the SD density as well as the conversion of basal plane dislocations (BPDs) into threading edge dislocations (TEDs).  相似文献   
14.
The photocurrent and photopotential for undoped polycrystalline diamond film electrodes prepared by chemical vapor deposition and annealed in vacuum at 1500–1640°C are measured. The metal-like samples (annealed at 1630°C) have a negligible photosensitivity. Judging from the positive sign of the photopotential and the cathodic direction of the photocurrent, the material under study formally behaves as a p-type semiconductor. The photoeffects are presumably caused by structure defects, in particular, the dislocations in diamond crystallites formed close to intercrystalline boundaries during the high-temperature annealing.Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 343–349.Original Russian Text Copyright © 2005 by Pleskov, Krotova, Ralchenko, Khomich, Khmelnitskii.  相似文献   
15.
The catalytic activity of Ni/MgO catalysts was studied for the oxidative coupling of methane (OCM). The catalysts were characterized using transmission electron microscope (TEM) and XRD. The increase in C2+ selectivity of Ni/MgO was attributed to the presence of bulk dislocations and MgNiO2 phase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
16.
We have shown that threading dislocations can be removed from patterned heteroepitaxial semiconductors by glide to the sidewalls, which is driven by the presence of image forces. In principle, it should be possible to attain highly mismatched heteroepitaxial semiconductors which are completely free from threading dislocations, even though they are not pseudomorphic, by patterned heteroepitaxial processing. There are two basic approaches to patterned heteroepitaxial processing. The first involves selective area growth on a pre-patterned substrate. The second approach involves post-growth patterning followed by annealing. We have developed a quantitative model which predicts that there is a maximum lateral dimension for complete removal of threading dislocations by patterned heteroepitaxy. According to our model, this maximum lateral dimension is proportional to the layer thickness and increases monotonically with the lattice mismatch. For heteroepitaxial materials with greater than 1% lattice mismatch, our model predicts that practical device-sized threading dislocation-free regions may be realized by patterned heteroepitaxial processing.  相似文献   
17.
Hardness and slip systems by an indentation method were investigated on different habit planes of orthorhombic hen egg-white lysozyme (O-HEWL) crystals containing water. A dependence of the hardness on the water-evaporation time exhibits three stages as incubation, transition and saturated ones, as tetragonal (T)-HEWL crystals reported previously. The hardness values of (1 1 0), (0 1 0) and (0 1 1) habit planes of O-HEWL in the incubation stage or wet condition exhibits 6, 8 and 10 MPa, respectively. The hardness depends on indented planes but it is independent of the air-humidity and crystal volumes. These values correspond to the intrinsic hardness for O-HEWL crystals containing water. In the incubation stage, the slip traces are clearly observed around the indentation mark and the corresponding six kinds of slip systems are identified to be {0 1 1}<1 0 0>, {1 1 0}<1 1 0>, {0 1 1}<0 1 1>, {1 1 0}<0 0 1>, {1 0 0}<0 0 1> and {0 1 0}<0 0 1>.  相似文献   
18.
A series of systematic tensile and microbend tests were conducted on copper foil specimens with different thicknesses. The specimens were made of a copper foil having almost unidirectional crystal orientations that was considered to be nearly single-crystal. In order to investigate the effects of slip system interactions, two different crystal orientations relative to the tensile direction were considered in the tests: one is close to coplanar double-slip orientation, and the other is close to the ideal cube orientation (the tensile direction nearly coincides to [0 0 1]) that yields multi-planar multi-slip deformation. We extended the microbend test method to include the reversal of bending, and we attempted to divide the total amount of strain-hardening into isotropic and kinematic hardening components. In the tensile tests, no systematic tendency of size dependence was observed. In the microbend tests, size-dependent kinematic hardening behavior was observed for both the crystal orientations, while size dependence of isotropic hardening was observed only for the multi-planar multi-slip case. We introduce an extended crystal plasticity model that accounts for the effects of the geometrically necessary dislocations (GNDs), which correspond to the spatial gradients of crystallographic slips. Through numerical simulations performed using the model, the origin of the size-dependent behavior observed in the microbend tests is discussed.  相似文献   
19.
G. Sainath  P. Rohith 《哲学杂志》2013,93(29):2632-2657
Abstract

Molecular dynamics simulations have been performed to understand the size-dependent tensile deformation behaviour of 〈1 0 0〉 Cu nanowires at 10 K. The influence of nanowire size has been examined by varying square cross-section width (d) from 0.723 to 43.38 nm using constant length of 21.69 nm. The results indicated that the yielding in all the nanowires occurs through nucleation of partial dislocations. Following yielding, the plastic deformation in small size nanowires occurs mainly by slip of partial dislocations at all strains, while in large size nanowires, slip of extended dislocations has been observed at high strains in addition to slip of partial dislocations. Further, the variations in dislocation density indicated that the nanowires with d > 3.615 nm exhibit dislocation exhaustion at small strains followed by dislocation starvation at high strains. On the other hand, small size nanowires with d < 3.615 nm displayed mainly dislocation starvation at all strains. The average length of dislocations has been found to be same and nearly constant in all the nanowires. Both the Young’s modulus and yield strength exhibited a rapid decrease at small size nanowires followed by gradual decrease to saturation at larger size. The observed linear increase in ductility with size has been correlated with the pre- and post-necking deformation. Finally, dislocation–dislocation interactions leading to the formation of various dislocation locks, the dislocation–stacking fault interactions resulting in the annihilation of stacking faults and the size dependence of dislocation–surface interactions have been discussed.  相似文献   
20.
Ion implantation into contact holes has been widely used to dope the specific contact area and to reduce the contact resistance. In this study, mask edge defects were observed at the edge area of small contact holes with high aspect ratio, which resulted in multiplied dislocations penetrating into Si substrate for more than 0.3 μm after back-end processings. Those dislocations were identified to be Schockley partial dislocations and stair rod dislocations lying on 4 sets of inclined {111}Si planes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号