首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   21篇
  国内免费   2篇
物理学   31篇
无线电   66篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   4篇
  2012年   12篇
  2011年   14篇
  2010年   8篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有97条查询结果,搜索用时 9 毫秒
61.
相对论速调管放大器双间隙输出腔的粒子模拟   总被引:1,自引:2,他引:1       下载免费PDF全文
 用3维PIC程序对S波段强流相对论速调管放大器(RKA)双间隙输出腔内的微波提取情况进行了模拟,给出了产生微波的详细物理图像。模拟结果表明:采用双间隙输出腔能增加束波互作用长度,使提取到的微波功率和效率得到提高。模拟得到了输出微波功率随直流渡越角、随电子束外径与漂移管之间的距离、随基波调制深度以及耦合孔径向间距变化的规律。在电子束压580 kV、束流4 kA、基波调制深度80%、引导磁场1.5 T的条件下,模拟得到周期时间平均功率800 MW,频率约2.85 GHz,周期时间平均效率34.8%的微波。  相似文献   
62.
党赟  周亮 《无线电工程》2011,41(8):21-24
多侧音测距广泛应用于USB统一测控系统中,载波及侧音跟踪状态对距离结果有重要影响。在距离捕获阶段,载波及侧音跟踪状态影响距离匹配结果,在距离跟踪阶段,载波或侧音失锁会造成距离结果跳周。结合多测距音测距原理对捕获阶段和跟踪阶段中出现的问题进行了深入分析,在测距过程中利用速度值对距离结果进行实时检测及递推的方法可以解决上述问题,并结合工程应用数据对问题解决方法进行了验证。  相似文献   
63.
夏治平  董雷  胡军  邹峰 《电波科学学报》2011,(1):170-174,202
提出了一种用于移动多媒体广播(CMMB)业务的S波段电波传播模型分析比较方法.介绍了相关试验的实测场景与实验模型,以及数据分析的实施过程.数据分析过程首先使用ICS Telecom频率规划软件进行预测计算,然后对实测数据进行筛选,并将筛选后的实测数据导入ICS Telecom软件,最后用统计方法将预测和实测数据进行比较...  相似文献   
64.
成功地使用粒子群优化(PSO)算法优化设计了多级S波段EDFA,仿真结果表明,输入信号功率为-20 dBm时在1486~1520 nm可实现平坦增益,两级泵浦总功率为380 mW,平均增益可达10 dB以上,增益平坦度小于0.1 dB,噪声系数小于5 dB,满足WDM/DWDM系统的需求.另外,还重点对插入长波长ASE...  相似文献   
65.
付兴昌  潘宏菽 《微纳电子技术》2011,48(9):558-561,582
针对SiC功率金属半导体场效应晶体管如何在实现高性能的同时保证器件长期稳定的工作,从金属半导体接触、器件制造过程中的台阶控制、氧化与钝化层的设计及器件背面金属化实现等方面进行了分析;并结合具体工艺,对比给出了部分实验结果。从测试数据看,研制的微波SiC MESFET器件性能由研制初期在S波段瓦级左右的功率输出及较低的功率增益和功率附加效率,达到了在实现大功率输出的条件下,比Si器件高的功率增益和30%以上的功率附加效率,初步体现了SiC MESFET微波功率器件的优势,器件的稳定性也得到了提升,为器件性能和可靠性的进一步提升奠定了设计和工艺基础。  相似文献   
66.
To achieve high-gain S-band waveguide amplifiers and promote the practicality of integrated signal amplification devices, bent waveguide structures based on Tm3+ doped germanate glass substrate have been designed. Using simulated-bend method, the optimal radius for the curved structure is offered to be 1.90 cm with a loss coefficient of 0.04 dB/cm, as the substrate size is minimally schemed. For the folded-spiral waveguide, the internal gain at 1482 nm is derived to be 13.01 dB, which is higher than the values of 8.21 and 4.22 dB in the U- and S-bend waveguides, respectively, and nearly three times higher than that of the straight one. Simulation results indicate that the optical path design is attractive in realizing the high gain of Tm3+ doped germanate glass channel waveguides for practical S-band amplification.  相似文献   
67.
随着波导式耦合行波加速管设计梯度的日益提高,为了防止加速管输入耦合器电场的横向动量在束流通过加速器耦合器时引起束流品质的下降,侧壁开有两个对称耦合孔的对称双馈圆柱腔获得了广泛的应用。研制的S波段J型波导馈电加速管即为双馈圆柱腔中的一种,研制样管在老练平台上老练时的最高加速梯度达到30 MV/m。然而因为四极场的存在,开有两个耦合孔的圆柱耦合腔内,仍然会引起轴向电场的幅度和相位在横向的梯度,从而使束流发射度变差。在理论上对J型波导馈电的跑道式耦合腔进行了研究,通过与圆柱腔进行比对模拟计算,证明跑道式耦合器可以很好地改善轴向电场在横向平面内非近轴区域沿圆周的场强一致性,从而减小四极场的影响。重要的是,J型波导馈电跑道式耦合腔的机械加工、测试比圆柱腔更加容易实现,是未来双馈加速器发展的一个理想方向。  相似文献   
68.
李烨  李冬凤  王子威  闫松 《强激光与粒子束》2020,32(10):103005-1-103005-6
介绍一种新型超宽带(相对带宽≥17%)S波段大功率多注速调管的研制过程及研制成果,该速调管首次在S波段实现了17%的相对带宽,带宽指标为国内宽带多注速调管首次实现。通过优化电子光学系统和高频段的参数设计、优化电子枪区的结构设计、优化整管散热系统设计等多项措施,提高电子注流通率及注波互作用效率,降低高频部分的散热压力,使该速调管仅在120 kW的峰值功率下实现了大于30%的效率及40 kW的平均功率。同时,通过近似连续波阴极发射电流密度的低阴极负荷设计、阴极区零部件多项预处理工艺措施等实现了3 ms脉宽的稳定工作及连续24 h稳定工作不打火。为实现3 min内满功率输出及2000 h的寿命,对阴极工作参数、电子枪区的工艺结构进行了反复优化。本项目在能够实现指标的前提下,进行了小批量的生产及车载环境的环境试验,并针对可能产生的不可靠性因素,进行了改进,使产品真正能实现工程化应用,为后续同类产品的设计提供有效的技术参考。  相似文献   
69.
弹体上S波段微带共形天线阵   总被引:1,自引:0,他引:1  
张福顺  焦永昌 《电波科学学报》1998,13(2):209-212,226
详细论述了弹体微带共形天线阵的设计方法及其工程应用。依据此工程近似方法,研制了一副S波段16单元微带天线共形阵,并给出了实测结果。  相似文献   
70.
We propose and investigate experimentally a gain-clamped S-band erbium-doped fiber amplifier module, employing a fiber Bragg grating to serve as a reflected element to lase a saturated tone injected into the module, by forward optical feedback method. In addition, different injected powers of the saturated tone are used to realize the performances of gain and noise figure for the proposed amplifier over the effectively wavelength range of 1478-1520 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号