首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1578篇
  免费   203篇
  国内免费   131篇
化学   423篇
晶体学   10篇
力学   226篇
综合类   7篇
数学   265篇
物理学   337篇
无线电   644篇
  2024年   1篇
  2023年   7篇
  2022年   19篇
  2021年   26篇
  2020年   34篇
  2019年   57篇
  2018年   42篇
  2017年   50篇
  2016年   56篇
  2015年   69篇
  2014年   107篇
  2013年   121篇
  2012年   105篇
  2011年   114篇
  2010年   78篇
  2009年   96篇
  2008年   107篇
  2007年   84篇
  2006年   114篇
  2005年   83篇
  2004年   81篇
  2003年   74篇
  2002年   63篇
  2001年   57篇
  2000年   34篇
  1999年   27篇
  1998年   42篇
  1997年   30篇
  1996年   20篇
  1995年   23篇
  1994年   14篇
  1993年   12篇
  1992年   16篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   5篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1912条查询结果,搜索用时 15 毫秒
51.
本文利用扫描电镜和电化学方法确定了最佳镀铂电位,并进一步研究了酶电极和酶免疫电极在基体电极镀铂和未镀铂条件下的米氏常数、电化学反应速率常数和反应速度控制步骤。比较分析了生物电极的最佳实验条件。  相似文献   
52.
Here, we describe a computational approach for studying enzymes that catalyze complex multi‐step reactions and apply it to Ribulose 1,5‐bisphosphate carboxylase–oxygenase (Rubisco), the enzyme that fixes atmospheric carbon dioxide within photosynthesis. In the 5‐step carboxylase reaction, the substrate Ribulose‐1,5‐bisphosphate (RuBP) first binds Rubisco and undergoes enolization before binding the second substrate, CO2. Hydration of the RuBP.CO2 complex is followed by C C bond scission and stereospecific protonation. However, details of the roles and protonation states of active‐site residues, and sources of protons and water, remain highly speculative. Large‐scale computations on active‐site models provide a means to better understand this complex chemical mechanism. The computational protocol comprises a combination of hybrid semi‐empirical quantum mechanics and molecular mechanics within constrained molecular dynamics simulations, together with constrained gradient minimization calculations using density functional theory. Alternative pathways for hydration of the RuBP.CO2 complex and associated active‐site protonation networks and proton and water sources were investigated. The main findings from analysis of the resulting energetics advocate major revision to existing mechanisms such that: hydration takes place anti to the CO2; both hydration and C C bond scission require early protonation of CO2 in the RuBP.CO2 complex; C C bond scission and stereospecific protonation reactions are concerted and, effectively, there is only one stable intermediate, the C3‐gemdiolate complex. Our main conclusions for interpreting enzyme kinetic results are that the gemdiolate may represent the elusive Michaelis–Menten‐like complex corresponding to the empirical Km (=Kc) with turnover to product via bond scission concerted with stereospecific protonation consistent with the observed catalytic rate. © 2018 Wiley Periodicals, Inc.  相似文献   
53.
Polymeric networks are produced by step‐growth polyaddition and co‐polyaddition reactions of 1‐ethylimidazoline in combination with various diisocyanates. Five aromatic, two aliphatic diisocyanates and a polyurethane prepolymer are used as particular reactant in N,N‐dimethylformamide as solvent at room temperature. Obviously, 1‐ethylimidazoline can serve as trifunctional monomer, which enables a crosslinking reaction with diisocyanates. Molecular structure elements of the polymeric networks were studied by solid state 13C‐NMR spectroscopy revealing that detailed molecular structure formations are determined whether aromatic or aliphatic diisocyanates are used. Quantum chemical calculations were used as supporting method to elucidate the complex reaction cascades. Hence, it can be shown that beside 3:1 stoichiometric structures 2:1 based structures are formed as well. These structures are observed as kinetically controlled products only when aromatic diisocyanate monomers are used. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 977–985  相似文献   
54.
Click Cu(I)‐catalyzed polymerizations of diynes that contained ester linkages and diazides were performed to produce polyesters (click polyesters) of large molecular weights [(~1.0–7.0 ) × 104], that contained main‐chain 1,4‐disubstitued triazoles in excellent yields. Incorporation of triazole improved the thermal properties and magnified the even‐odd effect of the methylene chain length. We also found that, by changing the positions of the triazole rings, the thermal properties of the polyesters could be controlled. The use of in situ azidation was a safe reaction, as explosive diazides are not used. In addition, the microwave heating was found to accelerate the polymerization rates. This is the first study that has applied click chemistry for the synthesis of a series of polyesters. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4207–4218, 2010  相似文献   
55.
优化LED路灯光强分布测试系统的测试步距角可以较大程度地提高LED路灯测试的效率。选择不同的测试步距角对LED路灯的光强分布进行测试,将1°测试步距角所测得的路灯光强分布视为真值,采用相关分析的方法研究在较大步距角下所测得的路灯光强分布与真值之间的近似程度。研究结果显示,当相关系数要求在98%左右时,可以选择15°测试步距角对LED路灯的光强分布进行测试,相对于真值测试,在此步距下LED路灯的测试时间减少了98%以上,极大地提高了测试效率。  相似文献   
56.
史生华  尹世伟  郭艳丽  高鸿 《分析化学》2002,30(9):1025-1029
用相继切换不同浓度I^-试液的活度阶梯法研究了碘化银基离子选择电极(I^--ISE)的瞬时响应。随电位变化的离子水合自由能△Gh(I^-)显示出|△Gh(I^-)|越小,正活度阶民位跃迁越快而负活度阶梯电位变化越慢。将-△Gh(I^-)看作I(H2O)n^-与I^--ISE表面反应的活化能解释了这个现象。比起传统电位法,活度阶梯法的主要优点是ISEs响应非常快并且更灵敏,有可能实现小体积试液的快速分析。  相似文献   
57.
Oligo(spiroketal)s (OSKs) were synthesized from myo‐inositol, a naturally occurring cyclic compound bearing six hydroxyl groups. The successful synthesis of OSKs was achieved using silyl ethers 2 derived from 1,4‐di‐O‐alkylated myo‐inositol 1 as monomers, which underwent polycondensation with 1,4‐cyclohexanedione (CHD) at 0 °C in the presence of trimethylsilyl triflate as a catalyst. Because of the irreversible nature of the condensation reaction of silyl ethers with ketones, the resulting OSKs 7 had higher molecular weights than previously reported OSKs that were obtained by polycondensation of tetraols 1 with CHD, where backward hydrolysis of the ketal functions occurred. In addition, another series of OSKs, 8, were synthesized using silyl ethers 3 derived from 2,5‐di‐O‐alkylated myo‐inositol 6 , which are more symmetric monomers than silyl ethers 2 . Silyl ethers 3 underwent efficient polycondensation with CHD, whereas tetraol 6 did not, demonstrating that the derivation of such tetraols into the corresponding silyl ethers is a powerful strategy to access OSKs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2407–2414  相似文献   
58.
59.
王德峥 《催化学报》2010,26(8):972-978
 使用 Langmuir-Hinshelwood (L-H) 动力学的学者大部分未注意到该动力学包含了所有吸附物种采用拟稳态假设的隐含条件, 因而他们通常忽视了确认实验条件是否允许采用拟稳态假设. 然而, 对于大部分气固催化反应, 拟稳态假设的成立需基于催化活性位浓度很小的前提. 对于催化活性位浓度高的反应体系, 其覆盖度较高的吸附物种不满足拟稳态假设. 因此, 在这种情况下通过实验测定的动力学常数没有物理意义, 而仅为该实验条件下的数学回归参数. 本文将活性位浓度小于最高反应气浓度的十分之一视为拟稳态假设成立的充分条件, 通过估算发现许多催化剂并不满足该条件.  相似文献   
60.
Multiple conformations separated by high‐energy barriers represent a challenging problem in free‐energy calculations due to the difficulties in achieving adequate sampling. We present an application of thermodynamic integration (TI) in conjunction with the local elevation umbrella sampling (LE/US) method to improve convergence in alchemical free‐energy calculations. TI‐LE/US was applied to the guanosine triphosphate (GTP) to 8‐Br‐GTP perturbation, molecules that present high‐energy barriers between the anti and syn states and that have inverted preferences for those states. The convergence and reliability of TI‐LE/US was assessed by comparing with previous results using the enhanced‐sampling one‐step perturbation (OSP) method. A linear interpolation of the end‐state biasing potentials was sufficient to dramatically improve sampling along the chosen reaction coordinate. Conformational free‐energy differences were also computed for the syn and anti states and compared to experimental and theoretical results. Additionally, a coupled OSP with LE/US was carried out, allowing the calculation of conformational and alchemical free energies of GTP and 8‐substituted GTP analogs. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号