首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8852篇
  免费   559篇
  国内免费   783篇
化学   2575篇
晶体学   54篇
力学   439篇
综合类   13篇
数学   548篇
物理学   3944篇
无线电   2621篇
  2024年   8篇
  2023年   78篇
  2022年   73篇
  2021年   88篇
  2020年   168篇
  2019年   125篇
  2018年   142篇
  2017年   207篇
  2016年   259篇
  2015年   293篇
  2014年   466篇
  2013年   810篇
  2012年   463篇
  2011年   689篇
  2010年   532篇
  2009年   598篇
  2008年   620篇
  2007年   623篇
  2006年   557篇
  2005年   411篇
  2004年   395篇
  2003年   331篇
  2002年   320篇
  2001年   272篇
  2000年   281篇
  1999年   210篇
  1998年   199篇
  1997年   155篇
  1996年   132篇
  1995年   128篇
  1994年   90篇
  1993年   89篇
  1992年   81篇
  1991年   58篇
  1990年   39篇
  1989年   43篇
  1988年   35篇
  1987年   19篇
  1986年   13篇
  1985年   13篇
  1984年   13篇
  1983年   8篇
  1982年   10篇
  1981年   11篇
  1980年   10篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
951.
Selective solvation can be crucial in phase separation in polar binary mixtures (water–oil) with a small amount of hydrophilic ions or hydrophobic particles. They are preferentially attracted to one of the solvent components, leading to a number of intriguing effects coupled to phase separation. For example, if cations and anions interact differently with the two components, an electric double layer emerges at a liquid–liquid interface. The main aim of this paper is to show that a strongly hydrophilic (hydrophobic) solute induces precipitation of water-rich (oil-rich) domains above a critical solute density np outside the solvent coexistence curve.  相似文献   
952.
The paper presents a constitutive framework for solids with dissipative micro-structures based on compact variational statements. It develops incremental minimization and saddle point principles for a class of gradient-type dissipative materials which incorporate micro-structural fields (micro-displacements, order parameters, or generalized internal variables), whose gradients enter the energy storage and dissipation functions. In contrast to classical local continuum approaches to inelastic solids based on locally evolving internal variables, these global micro-structural fields are governed by additional balance equations including micro-structural boundary conditions. They describe changes of the substructure of the material which evolve relatively to the material as a whole. Typical examples are theories of phase field evolution, gradient damage, or strain gradient plasticity. Such models incorporate non-local effects based on length scales, which reflect properties of the material micro-structure. We outline a unified framework for the broad class of first-order gradient-type standard dissipative solids. Particular emphasis is put on alternative multi-field representations, where both the microstructural variable itself as well as its dual driving force are present. These three-field settings are suitable for models with threshold- or yield-functions formulated in the space of the driving forces. It is shown that the coupled macro- and micro-balances follow in a natural way as the Euler equations of minimization and saddle point principles, which are based on properly defined incremental potentials. These multi-field potential functionals are outlined in both a continuous rate formulation and a time-space-discrete incremental setting. The inherent symmetry of the proposed multi-field formulations is an attractive feature with regard to their numerical implementation. The unified character of the framework is demonstrated by a spectrum of model problems, which covers phase field models and formulations of gradient damage and plasticity.  相似文献   
953.
We model long rod-like molecules, such as DNA and coiled-coil proteins, as one-dimensional continua with a multi-well stored energy function. These molecules suffer a structural change in response to large forces, characterized by highly typical force-extension behavior. We assume that the structural change proceeds via a moving folded/unfolded interface, or phase boundary, that represents a jump in strain and is governed by the Abeyaratne–Knowles theory of phase transitions. We solve the governing equations using a finite difference method with moving nodes to represent phase boundaries. Our model can reproduce the experimental observations on the overstretching transition in DNA and coiled-coils and makes predictions for the speed at which the interface moves. We employ different types of kinetic relations to describe the mobility of the interface and show that this leads to different classes of experimentally observed force-extension curves. We make connections with several existing theories, experiments and simulation studies, thus demonstrating the effectiveness of the phase transitions-based approach in a biological setting.  相似文献   
954.
The present paper investigates the capability of micromechanical material models to predict the ferroelectric behaviour of morphotropic PZT ceramics in a rate-independent approximation based on realistic microscopic material parameters. Starting point is a three-dimensional tetragonal model, which builds on the model of Pathak and McMeeking [2008. Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading. Journal of the Mechanics and Physics of Solids 56, 663-683]. Volume fractions of the crystallographic variants represent the domain structure inside the grains. Interactions between the grains are taken into account by means of a representative volume element of the grain compound. A simplified set of realistic microscopic material parameters of the lattice in terms of Young's modulus, Poisson's ratio, dielectric constant, and spontaneous strain and polarisation is derived from experimental data and theoretical results given in the literature. The simulation of the macroscopic remanent polarisation and strain response due to two load cases shows explicitly that the tetragonal model is not capable to reproduce the behaviour of morphotropic PZT. Therefore, the model is extended by the rhombohedral phase, allowing a mixture of both phases with varying quantities inside the grains. A comparison of our results with experimental data shows a remarkably good agreement, revealing the capability of the extended model.  相似文献   
955.
This paper uses the thermodynamic data of aqueous solutions of uncrosslinked poly(N-isopropylacrylamide) (PNIPAM) to study the phase transition of PNIPAM hydrogels. At a low temperature, uncrosslinked PNIPAM can be dissolved in water and form a homogenous liquid solution. When the temperature is increased, the solution separates into two liquid phases with different concentrations of the polymer. Covalently crosslinked PNIPAM, however, does not dissolve in water, but can imbibe water and form a hydrogel. When the temperature is changed, the hydrogel undergoes a phase transition: the amount of water in the hydrogel in equilibrium changes with temperature discontinuously. While the aqueous solution is a liquid and cannot sustain any nonhydrostatic stress in equilibrium, the hydrogel is a solid and can sustain nonhydrostatic stress in equilibrium. The nonhydrostatic stress can markedly affect various aspects of the phase transition in the hydrogel. We adopt the Flory-Rehner model, and show that the interaction parameter as a function of temperature and concentration obtained from the PNIPAM-water solution can be used to analyze diverse phenomena associated with the phase transition of the PNIPAM hydrogel. We analyze free swelling, uniaxially and biaxially constrained swelling of a hydrogel, swelling of a core-shell structure, and coexistent phases in a rod. The analysis is related to available experimental observations. Also outlined is a general theory of coexistent phases undergoing inhomogeneous deformation.  相似文献   
956.
We present a fully general, three dimensional, constitutive model for Shape Memory Alloys (SMAs), aimed at describing all of the salient features of SMA evolutionary response under complex thermomechanical loading conditions. In this, we utilize the mathematical formulation we have constructed, along with a single set of the model’s material parameters, to demonstrate the capturing of numerous responses that are experimentally observed in the available SMA literature. This includes uniaxial, multi-axial, proportional, non-proportional, monotonic, cyclic, as well as other complex thermomechanical loading conditions, in conjunction with a wide range of temperature variations. The success of the presented model is mainly attributed to the following two main factors. First, we use multiple inelastic mechanisms to organize the exchange between the energy stored and energy dissipated during the deformation history. Second, we adhere strictly to the well established mathematical and thermodynamical requirements of convexity, associativity, normality, etc. in formulating the evolution equations governing the model behavior, written in terms of the generalized internal stress/strain tensorial variables associated with the individual inelastic mechanisms. This has led to two important advantages: (a) it directly enabled us to obtain the limiting/critical transformation surfaces in the spaces of both stress and strain, as importantly required in capturing SMA behavior; (b) as a byproduct, this also led, naturally, to the exhibition of the apparent deviation from normality, when the transformation strain rate vectors are plotted together with the surfaces in the space of external/global stresses, that has been demonstrated in some recent multi-axial, non-proportional experiments.  相似文献   
957.
In this paper, the dimensional-free Harnack inequalities are established on infinite-dimensional spaces. More precisely, we establish Harnack inequalities for heat semigroup on based loop group and for Ornstein-Uhlenbeck semigroup on the abstract Wiener space. As an application, we establish the HWI inequality on the abstract Wiener space, which contains three important quantities in one inequality, the relative entropy “H”, Wasserstein distance “W”, and Fisher information “I”.  相似文献   
958.
电子商品防盗系统的不断优化与升级对扫频信号源的性能和特色提出了更高的要求。在硬件模块升级的同时,提出了一种频率可锁定的扫频信号源的的设计方案并成功实现。首先分析了正弦波的合成原理,并对系统使用芯片进行简要介绍;然后对系统的硬件设计方案展开论述,包括电源、时钟、JTAG调试端口以及接口设计,并给出了电路图;最后,详细介绍系统软件设计,并给出了程序流程图与详细代码。测试结果表明:设计输出的正弦波频率精确度高,幅度稳定,相位噪声较小,尤其是其所具有的锁频功能,更有利于标签的正确检测和识别。  相似文献   
959.
为提高锁相环的相位噪声性能,本文设计了一种级联式偏置锁相环来实现宽带低相噪频率合成器,通过理论分析得到其相位噪声模型,证明了该技术能够有效地降低锁相环路中鉴相器的噪声基底,并且混频交互调产生的所有杂散可由环路滤波器抑制,从而将窄带高频谱纯度信号扩展为宽带高频谱纯度信号。基于该技术提出了2GHz ~5GHz 的低相噪宽带频率合成器方案,并对其相位噪声指标进行了分析。理论与实验结果表明,相比于传统的小数分频式锁相环方案,该方案的带内相位噪声有明显改善。  相似文献   
960.
提出一种盲接收环境下的慢跳频(SFH)系统频率跳变时刻同步算法。该算法针对慢跳频系统中1跳数据包含多个调制符号的特征,通过非线性变换得到包含离散谱线的信号。利用跳频信号在每1跳内能量恒定的特性,将1跳信号均匀划分为2段,提取分段信号非线性变换后离散谱线能量差异,作为调整频率跳变时刻的判决量,通过反馈环路实现盲接收环境下频率跳变时刻的精确同步。对典型慢跳频DPSK(SFH/DPSK)系统在盲接收环境下的同步性能进行仿真,在Eb/N0大于16 dB时,算法同步性能接近10-3,验证了算法的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号