首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119111篇
  免费   8519篇
  国内免费   12690篇
化学   71784篇
晶体学   1162篇
力学   2569篇
综合类   893篇
数学   14304篇
物理学   19755篇
无线电   29853篇
  2024年   224篇
  2023年   1065篇
  2022年   2068篇
  2021年   2281篇
  2020年   2766篇
  2019年   2704篇
  2018年   2484篇
  2017年   3697篇
  2016年   3717篇
  2015年   3656篇
  2014年   4722篇
  2013年   8213篇
  2012年   8027篇
  2011年   7145篇
  2010年   5762篇
  2009年   7444篇
  2008年   7811篇
  2007年   8299篇
  2006年   7731篇
  2005年   6559篇
  2004年   5962篇
  2003年   4955篇
  2002年   5858篇
  2001年   3558篇
  2000年   3192篇
  1999年   2911篇
  1998年   2591篇
  1997年   2090篇
  1996年   1778篇
  1995年   1692篇
  1994年   1445篇
  1993年   1185篇
  1992年   1101篇
  1991年   765篇
  1990年   623篇
  1989年   564篇
  1988年   423篇
  1987年   328篇
  1986年   295篇
  1985年   301篇
  1984年   337篇
  1983年   190篇
  1982年   288篇
  1981年   260篇
  1980年   243篇
  1979年   229篇
  1978年   216篇
  1977年   153篇
  1976年   129篇
  1973年   85篇
排序方式: 共有10000条查询结果,搜索用时 792 毫秒
31.
近年来,机器学习等人工智能技术被应用于蛋白质工程,其在蛋白质结构、功能预测、催化活性等研究中具有独特优势。在未知蛋白质结构的情况下,将蛋白质序列和功能特性与机器学习相结合,基于序列-活性关系(innovative sequence-activity relationship,ISAR)算法,将蛋白质氨基酸序列数字化,用快速傅里叶变换(fast four transform,FFT)进行预处理,再进行偏最小二乘回归建模,可在数据集较少情况下拟合得到最佳模型。通过机器学习对紫色球杆菌视紫红质(gloeobacter violaceus rhodopsin,GR)的突变体蛋白质氨基酸序列与光谱最大吸收波长进行建模,获得了最佳模型。用最佳索引LEVM760106建模得到的确定系数R2 为0.944,均方误差E为11.64。用小波变换进行的预处理,其R2 虽也约为0.944,但E大于11.64,不及FFT进行的预处理。方法较好地解决了蛋白质序列与功能特性之间的数学建模问题,在蛋白质工程中可为预测更优的突变体提供支持。  相似文献   
32.
In this study, multiwalled carbon nanotube (MWCNT) was modified by the pyridine group using a silane agent and characterized by infrared spectroscopy (IR), thermal analysis (TG/DTA), and elemental analysis (CHN) and scanning electron microscopy (SEM). The application of this sorbent was investigated in determination of lead ions in aqueous samples, using flame atomic absorption spectrometry (FAAS). Through this study, different parameters such as pH and sample flow rate on adsorption process and eluent concentration, volume and flow rate were optimized. The limit of detection (LOD), the relative standard deviation and the recovery of the method were 2 ng mL?1, 1.3% and 99.7%, respectively. Two standard reference materials (NIST 1571 and NIST 1572) were used to verify accuracy of this method. Finally, the sorbent was successfully applied for extraction and determination of low levels of Pb(II) ions in aqueous samples.  相似文献   
33.
The Pd‐catalyzed polycondensation of 4‐octylaniline with various dibromoarylenes was carried out under microwave heating. Microwave heating led to a decrease in the reaction time and an increase in the molecular weight of the polymers as compared to conventional heating. Microwave heating also allowed the catalyst loading to be reduced to 1 mol %, yielding polymerization results that were comparable to those under conventional heating and 5 mol % catalyst. Investigations regarding field‐effect transistors and organic photovoltaic cells using the obtained poly(arylamine) with azobenzene units revealed that increasing the molecular weight of the polymer led to improved device performance, including hole mobility and power conversion efficiency. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 536–542  相似文献   
34.
Partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions (ps‐PES‐FPES), with ionic exchange capacity (IEC) ranging between 0.9 and 1.5 meq H+/g, are synthesized by regioselective bromination of partially fluorinated poly(arylene ether sulfone) multiblock copolymers (PES‐FPES), followed by Ullman coupling reaction with lithium 1,1,2,2‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy)ethanesulfonate. The PES‐FPES are prepared by aromatic nucleophilic substitution reaction by an original approach, that is, “one pot two reactions synthesis.” The chemical structures of polymers are analyzed by 1H and 19F NMR spectroscopy. The resulted ionomers present two distinct glass transitions and α relaxations revealing phase separation between the hydrophilic and the hydrophobic domains. The phase separation is observed at much lower block lengths of ps‐PES‐FPES as compared with the literature. AFM and SANS observations supported the phase separation, the hydrophilic domains are well dispersed but the connectivity to each other depends on the ps‐PES block lengths. The thermomechanical behavior, the water up‐take, and the conductivity of the ps‐PES‐FPES membranes are compared with those of Nafion 117® and randomly functionalized polysulfone (ps‐PES). Conductivities close or higher to those of Nafion 117® are obtained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1941–1956  相似文献   
35.
The development of synthetic routes which lead to five new diisocyanide monomers with one or two phenolic groups is described. Their polymerization behavior is studied with Pd‐ and Ni‐based initiators, as well as under microwave irradiation. The polymerizability is mainly dominated by steric effects as is concluded from experiments using different protecting groups. Chiroptical properties of these new polymers are studied by CD‐spectroscopy. After deprotection, helically chiral poly(quinoxalin‐2,3‐diyl)s are obtained which display a Brønsted function attached to a stereolabile biaryl axis whose configuration should be influenced by the chiral polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1320–1329  相似文献   
36.
为了减小传统的最差情况设计方法引入的电压裕量,提出了一种变化可知的自适应电压缩减(AVS)技术,通过调整电源电压来降低电路功耗.自适应电压缩减技术基于检测关键路径的延时变化,基于此设计了一款预错误原位延时检测电路,可以检测关键路径延时并输出预错误信号,进而控制单元可根据反馈回的预错误信号的个数调整系统电压.本芯片采用SMIC180 nm工艺设计验证,仿真分析表明,采用自适应电压缩减技术后,4个目标验证电路分别节省功耗12.4%,11.3%,10.4%和11.6%.  相似文献   
37.
With a vast, synthetically accessible compositional space and highly tunable hydrolysis rates, poly(β-amino ester)s (PBAEs) are an attractive degradable polymer platform. Leveraging PBAEs in a wide range of applications hinges on the ability to program degradation, which, thus far, has been frustrated by multiple confounding phenomena contributing to the degradation of these charged polyesters. Basic conditions accelerate hydrolysis, yet reduce solubility, limiting water access to amines and esters. Further, the high buffering capacity of PBAEs can render buffers ineffective at controlling solution pH. To unify understanding of PBAE degradation and solution properties, this study examines PBAE hydrolysis as a function of pH and buffer concentration as well as polymer hydrophobicity. At low buffer concentrations, the PBAE amines and the acid produced during hydrolysis control solution pH. Meanwhile, at high buffer concentrations that afford relatively constant pH, hydrolysis rate increases with pH, despite the reduced PBAE solubility. Increasing the hydrophobic content of PBAEs eventually hinders the capacity of the polymer to accept protons from solution, limiting the pH increase and slowing hydrolysis. These studies showcase the role of buffering on the pH-dependent degradation and solution properties of PBAEs, providing guidance for programming degradation in applications ranging from drug delivery to thermosets.  相似文献   
38.
An innovative volatolomic approach employs the detection of biomarkers present in cerumen (earwax) to identify cattle intoxication by Stryphnodendron rotundifolium Mart., Fabaceae (popularly known as barbatimão). S. rotundifolium is a poisonous plant with the toxic compound undefined and widely distributed throughout the Brazilian territory. Cerumen samples from cattle of two local Brazilian breeds (‘Curraleiro Pé-Duro’ and ‘Pantaneiro’) were collected during an experimental intoxication protocol and analyzed using headspace (HS)/GC–MS followed by multivariate analysis (genetic algorithm for a partial least squares, cluster analysis, and classification and regression trees). A total of 106 volatile organic metabolites were identified in the cerumen samples of bovines. The intoxication by S. rotundifolium influenced the cerumen volatolomic profile of the bovines throughout the intoxication protocol. In this way, it was possible to detect biomarkers for cattle intoxication. Among the biomarkers, 2-octyldecanol and 9-tetradecen-1-ol were able to discriminate all samples between intoxicated and nonintoxicated bovines. The cattle intoxication diagnosis by S. rotundifolium was accomplished by applying the cerumen analysis using HS/GC–MS, in an easy, accurate, and noninvasive way. Thus, the proposed bioanalytical chromatography protocol is a useful tool in veterinary applications to determine this kind of intoxication.  相似文献   
39.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
40.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号