首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6462篇
  免费   571篇
  国内免费   464篇
化学   3505篇
晶体学   53篇
力学   46篇
综合类   4篇
数学   13篇
物理学   1036篇
无线电   2840篇
  2024年   25篇
  2023年   493篇
  2022年   126篇
  2021年   308篇
  2020年   261篇
  2019年   244篇
  2018年   165篇
  2017年   334篇
  2016年   436篇
  2015年   373篇
  2014年   589篇
  2013年   466篇
  2012年   439篇
  2011年   366篇
  2010年   306篇
  2009年   363篇
  2008年   291篇
  2007年   309篇
  2006年   264篇
  2005年   193篇
  2004年   205篇
  2003年   124篇
  2002年   107篇
  2001年   108篇
  2000年   62篇
  1999年   73篇
  1998年   57篇
  1997年   69篇
  1996年   42篇
  1995年   38篇
  1994年   38篇
  1993年   34篇
  1992年   25篇
  1991年   23篇
  1990年   25篇
  1989年   17篇
  1988年   31篇
  1987年   12篇
  1986年   8篇
  1985年   4篇
  1984年   8篇
  1983年   2篇
  1982年   3篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
排序方式: 共有7497条查询结果,搜索用时 62 毫秒
961.
The influence of a series of alkyl alcohols on the work function of PEDOT:PSS thin films is systematically investigated by Kelvin probe measurements. We show that the PEDOT:PSS work function can be increased stepwise from 5.2 eV for pristine PEDOT:PSS to 5.61 eV using either alcohols with different alkyl chain length or varying the amount of alcohol in mixtures with chlorobenzene. Moreover, we demonstrate the effect of work function modification on merocyanine based bulk heterojunction solar cells, resulting in improved values for the open-circuit voltage comparable to those obtained with high work function MoO3. Thus, the processing method presented herein can potentially serve as a simple, alternative route to adjustable and high work function electrodes while maintaining processability from solution.  相似文献   
962.
963.
Thin and lightweight organic light-emitting diodes (OLEDs) are promising candidates for next-generation rollable displays; they offer numerous advantages, such as scalable manufacturing, high color contrast ratio, flexibility, and wide viewing angle. Despite the numerous merits of OLEDs, the insufficient lifetime and stability of blue OLEDs remain unresolved, thereby necessitating a feedback strategy for lifetime extension. Herein, we propose a simple yet effective methodology to determine the contact resistance (RCT) and characteristic trap energy (ET) of OLEDs simultaneously in the trapped-charge-limited-conduction regime, where electroluminescence occurs primarily. To validate our approach, the extracted RCT and ET values are directly compared with each other by connecting a commercial resistor (RC) to a blue OLED in series. The percent errors discovered in RC and ET are less than 7% and 4%, demonstrating the high feasibility and accuracy of our approach. We further employ this method to study the degradation mechanism of a blue OLED by presenting the electrical stress time- and cycle-dependent RCT, ET, ideality factor, and turn-on voltage, revealing different degradation patterns of the metal-to-transport layer interface and emission layer, respectively. Our results provide better insights into the electrical parameter extraction method and electrical current degradation mechanism in blue OLEDs.  相似文献   
964.
Both charge recombination and degradation in sequential solution processed polymer/fullerene bilayer organic photovoltaics (OPV) are effectively reduced by the insertion of a TiO2 inter-layer between the bilayer and Al electrode. The polymer/fullerene bilayer composed of a poly(3-hexylthiophene) (P3HT) bottom-layer and a [6,6] phenyl C61-butyric acid methyl ester (PCBM) top-layer shows significant change in morphology due to the substantial inter-penetration of P3HT and PCBM during the thermal annealing process. Consequently, the bilayer surface becomes P3HT rich resulting in significant charge recombination at the bilayer/Al interface of the bilayer OPV. The charge recombination rate of the bilayer OPV is reduced by one order of magnitude upon the insertion of a TiO2 nanoparticle inter-layer between the bilayer and the Al electrode after the thermal annealing process. In contrast, when the thermal annealing process is conducted after insertion of the inter-layer, the effect of the TiO2 inter-layer becomes insignificant. The VOC and efficiency of the bilayer OPV is greatly enhanced from 0.37 to 0.66 V and 1.2% to 3.7%, respectively by utilizing the properly constructed TiO2 inter-layer in the bilayer OPV. Additionally, insertion of the TiO2 inter-layer significantly improves the stability of the bilayer OPV. The bilayer OPV with a TiO2 inter-layer maintains 51% of its initial PCE after storage under dark ambient conditions for 700 h without encapsulation, whereas the bilayer OPV without a TiO2 inter-layer did not show any solar cell performance after 200 h under the same conditions.  相似文献   
965.
This work demonstrates a means of automatic transformation from planar electronic devices to desirable 3D forms. The method uses a spatially designed thermoplastic framework created via extrusion shear printing of acrylonitrile–butadiene–styrene (ABS) on a stress‐free ABS film, which can be laminated to a membrane‐type electronic device layer. Thermal annealing above the glass transition temperature allows stress relaxation in the printed polymer chains, resulting in an overall shape transformation of the framework. In addition, the significant reduction in the Young's modulus and the ability of the polymer chains to reflow in the rubbery state release the stress concentration in the electronic device layer, which can be positioned outside the neutral mechanical plane. Electrical analyses and mechanical simulations of a membrane‐type Au electrode and indium gallium zinc oxide transistor arrays before and after transformation confirm the versatility of this method for developing 3D electronic devices based on planar forms.  相似文献   
966.
967.
This investigation discusses a structural phase transition of organic crystalline phenanthrene and the resulting changes of its electronic and optical properties investigated by ab initio calculations based on density functional theory (DFT). The structure of phase I has been optimized then its electronic and optical properties have been calculated. Our computational results on phase I (at ambient pressure) get along well with the available experimental data.Calculating the electronic and optical properties of phase II are proceeded in the same way and the results, particulary Raman spectra, reveal a crystallographic phase transition indicated by abrupt changes in lattice constants which are accompanied by rearrangement of the molecules. This results in modifications of the electronic structure and optical response. For both phases the band dispersion of the valence and conduction bands are anisotropic, whereas the band splitting is strongly noticeable in phase II. By calculating the imaginary part of the dielectric function of phase II, we have found the appearance of new peaks at the lowest z-polarized absorption and about 30 eV in all absorption components. Excitonic effects in the optical properties of phases I and II have been investigated by solving the Bethe–Salpeter equation (BSE) on the basis of the FPLAPW method. Phase II shows four main excitonic structures in the energy range below band gap, whereas phase I shows two. The excitonic structures in the optical spectra of phase II show a red shift in comparison to phase I. The calculated binding energies of spin-singlet excitons in phase II are larger than the ones in phase I.  相似文献   
968.
A new planar A-D-A structured organic small molecule semiconductor (O-SMS) with dialkyl-thiophene substituted benzodithiophene (BDT) as central electron-rich core flanked by relatively electron-deficient units of [1,2,5]thiadiazolo[3,4-c]pyridine (PTz) and terminated with alkyl-bithiophene as π-conjugated end-caps, BDTDPTz, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDTDPTz possesses wider absorption spectra with an optical bandgap of 1.65 eV, lower the highest occupied molecular orbital (HOMO) energy level of −5.42 eV and highly crystalline structures in solid films. The OSCs based on BDTDPTz:PC71BM blend film with a lower PC71BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.28% with a relatively higher open-circuit voltage of 0.868 V and short circuit current density of 12.83 mA cm−2. These results indicate that highly coplanar and crystalline structure of BDTDPTz can effectively reduce the content of fullerene acceptor in the active layer and then enhance the absorption and PCE of the OSCs.  相似文献   
969.
The interaction of four moderately reactive molecules (MRMs), benzene (BZ), water, ammonia and silicon dioxide, with three aromatic organic superhalogens (OSHs) has been investigated at the density functional theory (DFT) level. The strength of the interaction is analysed from the distortions in the structures of both the MRMs and OSHs after complexation and the calculated binding energy (BE) values between the two interacting moieties. The interaction becomes stronger as we move from BZ to H2O to NH3 and strongest for SiO2 molecule. Contributions from different terms in total interaction energy have been examined by energy decomposition analysis (EDA). The charge flow values between MRMs and OSHs, and Mulliken spin density localised on the moderately reactive molecules have been evaluated to ensure whether the interaction is ionic or not. Atoms in Molecules (AIM) analysis has been performed to characterise the bonds formed between the two. Overall, our study gives a comprehensive account of the interaction between the moderately reactive molecules and three theoretically designed aromatic organic superhalogens, which will further motivate researchers in the field of superhalogen chemistry.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号