首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5806篇
  免费   135篇
  国内免费   308篇
化学   4753篇
晶体学   14篇
力学   24篇
综合类   7篇
数学   134篇
物理学   946篇
无线电   371篇
  2024年   9篇
  2023年   80篇
  2022年   39篇
  2021年   53篇
  2020年   54篇
  2019年   54篇
  2018年   38篇
  2017年   52篇
  2016年   89篇
  2015年   71篇
  2014年   116篇
  2013年   218篇
  2012年   236篇
  2011年   288篇
  2010年   189篇
  2009年   269篇
  2008年   292篇
  2007年   361篇
  2006年   329篇
  2005年   283篇
  2004年   264篇
  2003年   243篇
  2002年   210篇
  2001年   169篇
  2000年   195篇
  1999年   143篇
  1998年   164篇
  1997年   164篇
  1996年   131篇
  1995年   150篇
  1994年   123篇
  1993年   146篇
  1992年   102篇
  1991年   138篇
  1990年   132篇
  1989年   117篇
  1988年   123篇
  1987年   141篇
  1986年   68篇
  1985年   42篇
  1984年   59篇
  1983年   11篇
  1982年   21篇
  1981年   17篇
  1980年   16篇
  1979年   17篇
  1978年   7篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
排序方式: 共有6249条查询结果,搜索用时 140 毫秒
991.
Nitrate salts have become of greater importance in the decay of materials from historical buildings due to changes in the environment. This work presents an analytical diagnosis methodology to evaluate the impact of nitrate salts in mortars and bricks, combining noninvasive and microdestructive analytical techniques together with chemometric and thermodynamic data analyses. The impact of nitrate salts cannot be well ascertained if other soluble salts are not taken into account. Therefore, the principal results from this work relate to nitrate salts but some results for other kinds of salts are included. Data from Raman microprobe spectroscopy and micro X-ray fluorescence (μ-XRF) are used to characterise the original composition and a first approximation of the nature of the decay compounds, mainly nitrates. The soluble salts are extracted and the anions and cations are quantified by means of ion chromatography with conductimetric detection for anions/cations and inductively coupled plasma mass spectrometry (ICP/MS) for cations. The values obtained allow two different data treatments to be applied. First, chemometric analysis is carried out to search for correlations among anions and cations. Second, thermodynamic modelling with the RUNSALT program is performed to search for environmental conditions of soluble salt formation. All the results are finally used to diagnose the impact of nitrates.  相似文献   
992.
A new adsorbent is proposed for the solid-phase extraction of phenol and 1-naphthol from polluted water. The adsorbent (TX-SiO2) is an organosilica composite made from a bifunctional immobilized layer comprising a major fraction (91%) of hydrophilic diol groups and minor fraction (9%) of the amphiphilic long-chain nonionic surfactant Triton X-100 (polyoxyethylated isooctylphenol) (TX). Under static conditions phenol was quantitatively extracted onto TX-SiO2 in the form of a 4-nitrophenylazophenolate ion associate with cetyltrimethylammonium bromide. The capacity of TX-SiO2 for phenol is 2.4 mg g−1 with distribution coefficients up to 3.4 × 104 mL g−1; corresponding data for 1-naphthol are 1.5 mg g−1 and 3 × 103 mL g−1. The distribution coefficient does not change significantly for solution volumes of 0.025–0.5 L and adsorbent mass less than 0.03 g; 1–90 μg analyte can be easily eluted by 1–3 mL acetonitrile with an overall recovery of 98.2% and 78.3% for phenol and 1-naphthol, respectively. Linear correlation between acetonitrile solution absorbance (A 540) and phenol concentration (C) in water was found according to the equation A 540 = (6 ± 1) × 10−2 + (0.9 ± 0.1)C (μmol L−1) with a detection range from 1 × 10−8 mol L−1 (0.9 μL g−1) to 2 × 10−7 mol L−1 (19 μL g−1), a limit of quantification of 1 μL g−1 (preconcentration factor 125), correlation coefficient of 0.936, and relative standard deviation of 2.5%. A solid-phase colorimetric method was developed for quantitative determination of 1-naphthol on adsorbent phase using scanner technology and RGB numerical analysis. The detection limit of 1-naphthol with this method is 6 μL g−1 while the quantification limit is 20 μL g−1. A test system was developed for naked eye monitoring of 1-naphthol impurities in water. The proposed test kit allows one to observe changes in the adsorbent color when 1-naphthol concentration in water is 0.08–3.2 mL g−1.  相似文献   
993.
A chitosan resin possessing a phenylarsonic acid moiety (phenylarsonic acid type chitosan resin) was developed for the collection and concentration of trace uranium prior to inductively coupled plasma (ICP) atomic emission spectrometry (AES) measurement. The adsorption behavior of 52 elements was systematically examined by packing it in a minicolumn and measuring the elements in the effluent by ICP mass spectrometry. The resin could adsorb several cationic species by a chelating mechanism, and several oxo acids, such as Ti(IV), V(V), Mo(VI), and W(VI), by an anion-exchange mechanism and/or a chelating mechanism. Especially, U(VI) could be adsorbed almost 100% over a wide pH region from pH 4 to 8. Uranium adsorbed was easily eluted with 1 M nitric acid (10 mL), and the 25-fold preconcentration of uranium was achieved by using a proposed column procedure, which could be applied to the determination of trace uranium in seawater by ICP-AES. The limit of detection was 0.1 ng mL−1 for measurement by ICP-AES coupled with 25-fold column preconcentration.  相似文献   
994.
A system has been developed for extracting near-zero kinetic energy H and D ions formed by dissociative electron attachment. It is the essential part of a new set-up for vibrational spectroscopy of hydrogen molecules. A magnetic field is used to collimate the probing electron beam. Ions produced by electron collision with the target molecules are collected by the combined action of this field and an electrostatic field penetrating into the interaction region. Highly effective extraction is achieved by taking into account the correct out-of plane displacement of ion trajectories which is usually neglected in similar arrangements. The extraction conditions are mass dependent so that by proper tuning, mass selection of detected ions is achieved. The new system is also used for detecting positive ions created by electron collisions with hydrogen atoms and molecules.  相似文献   
995.
A two-dimensional biomimetic optrode for the detection and quantification of uranium in natural waters was fabricated. The sensing element was designed by the inclusion of uranyl ion imprinted polymer particles into polymethyl methacrylate followed by casting a thin film on a glass slide without any plasticizer. The ion imprinted polymer material was prepared via covalent immobilization of the newly synthesised ligand 4-vinyl phenylazo-2-naphthol by thermal polymerization. Operational parameters such as pH, response time and the amount of sensing material were optimized. The response characteristics of the imprinted and the corresponding non-imprinted polymer inclusion optrodes of uranium were compared under optimum conditions. The imprinted polymer inclusion optrode responds linearly to uranium in the concentration range 0–1.0 μg mL−1 with a detection limit of 0.18 μg mL−1, which is much better than the solution studies using 4-vinyl phenylazo-2-naphthol (1.5 μg mL−1). Triplicate determinations of 100 μg of uranium(VI) present in 250 mL of solution gave a mean absorbance of 0.018 with a relative standard deviation of 8.33%. The superior sensitivity of imprinted polymer inclusion optrode is exemplified by lower detection limits and broader dynamic range over non-imprinted polymer inclusion optrode. The developed imprinted polymer inclusion optrode was found to give stable and precise response for 3 months and can be used without any loss in sensitivity. The applicability for analysing ground, lake and tap-water samples collected in the vicinity of uranium deposits was successfully demonstrated.  相似文献   
996.
We present a methodology for fabricating polymer microspheres using inkjet printing of a biodegradable polymer containing either high explosives or high explosive simulant. Poly(dl-lactide/glycolide) 85:15 (PLGA) microsphere production is based on an oil/water emulsion solvent extraction process. The inkjet printing process allows for precise control of the microsphere diameter and the chemical composition. The microspheres can be used as calibrants or verification standards for explosives trace detection instruments. Gas chromatography/mass spectrometry analysis demonstrated that the composition of the microspheres was consistent with predicted concentrations based on the amount of analyte incorporated into the polymer solution and the inkjet operating parameters. We have demonstrated that the microspheres can be fabricated with a mass fraction of 70% of an analyte compound.  相似文献   
997.
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.  相似文献   
998.
Lithium ions have been applied in the clinic in the treatment of psychiatric disorders. In this work, we report artificial supramolecular lithium channels composed of pore-containing small aromatic molecules. By adjusting the lumen size and coordination numbers, we found that one of the supramolecular channels developed shows unprecedented transmembrane transport of exogenous lithium ions with a Li+/Na+ selectivity ratio of 23.0, which is in the same level of that of natural Na+ channels. Furthermore, four coordination sites inside channels are found to be the basic requirement for ion transport function. Importantly, this artificial lithium channel displays very low transport of physiological Na+, K+, Mg2+, and Ca2+ ions. This highly selective Li+ channel may become an important tool for studying the physiological role of intracellular lithium ions, especially in the treatment of psychiatric disorders.  相似文献   
999.
Tuning the coordination environments of metal single atoms (M1) in single-atom catalysts has shown large impacts on catalytic activity and stability but often barely on selectivity in thermocatalysis. Here, we report that simultaneously regulating both Rh1 atoms and ZrO2 support with alkali ions (e.g., Na) enables efficient switching of the reaction products from nearly 100 % CH4 to above 99 % CO in CO2 hydrogenation in a wide temperature range (240–440 °C) along with a record high activity of 9.4 molCO gRh−1 h−1 at 300 °C and long-term stability. In situ spectroscopic characterization and theoretical calculations unveil that alkali ions on ZrO2 change the surface intermediate from formate to carboxy species during CO2 activation, thus leading to exclusive CO formation. Meanwhile, alkali ions also reinforce the electronic Rh1-support interactions, endowing the Rh1 atoms more electron deficient, which improves the stability against sintering and inhibits deep hydrogenation of CO to CH4.  相似文献   
1000.
Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号