首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
  国内免费   2篇
化学   8篇
物理学   47篇
无线电   5篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   10篇
  2008年   7篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
41.
We report on the magnetic hyperthermia properties of chemically synthesized ferromagnetic 11 and 16 nm Fe(0) nanoparticles of cubic shape displaying the saturation magnetization of bulk iron. The specific absorption rate measured on 16 nm nanocubes is 1690±160 W/g at 300 kHz and 66 mT. This corresponds to specific losses-per-cycle of 5.6 mJ/g, largely exceeding the ones reported in other systems. A way to quantify the degree of optimization of any system with respect to hyperthermia applications is proposed. Applied here, this method shows that our nanoparticles are not fully optimized, probably due to the strong influence of magnetic interactions on their magnetic response. Once protected from oxidation and further optimized, such nano-objects could constitute efficient magnetic cores for biomedical applications requiring very large heating power.  相似文献   
42.
Self-heating from magnetic nanoparticles under AC magnetic field can be used either for hyperthermia or to trigger the release of an anti-cancer drug, using thermo-responsive polymers. The heat generated by applying an AC magnetic field depends on the properties of magnetic nanoparticles (composition, size, crystal structure) as well as the frequency and amplitude of the magnetic field. Before these systems can be efficiently applied for in vitro or in vivo studies, a thorough analysis of the magnetically induced heating is required. In this study, CoFe2O4 nanoparticles were synthesized, dispersed in water, and investigated as heating agents for magnetic thermo-drug delivery and hyperthermia. The temperature profiles and infrared (IR) camera images of heat generation of CoFe2O4 nanoparticles under various AC magnetic fields of 127–700 Oe at 195, 231, and 266 kHz were measured using an IR thermacam, excluding the external AC magnetic field interruption. The CoFe2O4 nanoparticles were successfully dispersed in water using an 11-mercaptoundecanoic acid ligand exchange method to exchange the solvent used for synthesis of hexane for water. During the heating experiments, each of CoFe2O4 nanoparticle solutions reached a steady state where the temperature rose between 0.1 and 42.9 °C above ambient conditions when a magnetic field of 127–634 Oe was applied at 231 or 266 kHz. The heat generation was found to be dependent on the intensity of AC magnetic field and applied frequency. Therefore, the desired heating for magnetically triggered drug delivery or hyperthermia could be achieved in water-dispersed CoFe2O4 nanoparticles by adjusting the AC magnetic field and frequency.  相似文献   
43.
This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around −23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS.  相似文献   
44.
Heat diffusion characteristics of a spherical heat source dispersing magnetite nanoparticles (MNPs) in hydro-gel were investigated numerically and experimentally to evaluate the conditions required for magnetic fluid hyperthermia (MFH). Numerical estimation assumed one-dimensional spherical model and constant heat evolution. Experimental observation was carried out by exposing the magnetite-dispersed hydro-gel in an AC magnetic field with strength and frequency of 3.2 kA/m and 600 kHz, respectively. The temperature distribution observed along the radial axis of the spherical heat source agreed well with the theoretical estimation quantitatively and qualitatively. However, the minor difference existed between the theory and experiment was due to the variation in experimentally determined and actual particle size distributions. Thus, we could conclude that the proposed algorithm could be extended to be used in the estimation of the temperature distribution in intravital conditions with blood flow, metabolism etc., to arrive at biologically significant conclusions helpful for MFH cancer treatment.  相似文献   
45.
Despite the fact that the magnetic hyperthermia (MH) has been known for more than 75 years, it is still debated in its clinical applications. The generation of a higher temperature at a tumor is called hyperthermia. There is a different of temperature ranges going from 39 to 40 ?°C up to such high temperatures as 80–90 ?°C. However, due to its high potential, MH is used along with nanoparticles as heat intermediaries in the treatment of cancer. Many Magnetic Nanoparticles (MNPs) with several properties and morphological metallic structures have been useful to magnetics hyperthermia therapy. These MNPs are categorized into two groups; magnetic alloy nanoparticles (MANPs) and magnetic metal oxide nanoparticles (MMONPs). The principal challenges of this method are the control of local tumoral temperature and the increase in nanoparticles heating power. The hyperthermia agents derived from magnetic nanoparticles along with magnetic field. In the recent study, hyperthermia thought, dissimilar types of magnetic nanoparticles for hyperthermia, efficacy for cancer therapy, advances, challenges, and future chances have been examined.  相似文献   
46.
This paper reports on the preparation, characterization and stealthiness of superparamagnetic nanoparticles (magnetite Fe3O4) with a 5 nm diameter and stabilized in water (pH ? 6.5) by a shell of water-soluble poly(ethylene oxide) (PEO) chains. Two types of diblock copolymers, i.e., poly(acrylic acid)-b-poly(ethylene oxide), PAA-PEO, and poly(acrylic acid)-b-poly(acrylate methoxy poly(ethyleneoxide)), PAA-PAMPEO, were prepared as stabilizers with different compositions and molecular weights. At pH ? 6.5, the negatively ionized PAA block interacts strongly with the positively-charged nanoparticles, thus playing the role of an anchoring block. Aggregates of coated nanoparticles were actually observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter was in the 50-100 nm range and the aggregation number (number of nanoparticles per aggregate) was lying between several tens and hundred. Moreover, the stealthiness of these aggregates was assessed “in vitro” by the hemolytic CH50 test. No response of the complement system was observed, such that biomedical applications can be envisioned for these magnetic nanoparticles. Preliminary experiments of magnetic heating (10 kA/m; 108 kHz) were performed and specific absorption rate varied from 2 to 13 W/g(Fe).  相似文献   
47.
本文用传递函数的概念导出了凹球面聚焦脉冲声扬的简洁表达式,从数值计算上和实验上研究了这种声场和中轴线上不同位置处声压信号的持续时间和频谱特征,分析了它们对热疗的影响。  相似文献   
48.
One-pot magnetic nanoparticles capped with pentenoic acid were prepared by co-precipitation process of Fe2+ and Fe3+ in the presence of ammonium hydroxide solution. The morphology and the hydrodynamic diameter of the prepared nanoparticles were characterized using scanning electron microscopy and dynamic light scattering, while stability, surface charge, and magnetic properties were assessed through thermogravimetric analysis, zeta potential, and a vibrating sample magnetometer, respectively. The type of interaction between iron nanoparticles and the carboxylate head of pentenoic acid was studied using Fourier transform infrared (FTIR). It indicates the existence of a bidentate chelation and pentenoic acid is not only adsorbed on the iron nanoparticles, but to some extent the nanoparticles are chemically bonded. When an alternating magnetic field is applied, magnetic materials are observed to heat as a result of relaxation. The heat generated from samples was examined by exposing a suspension containing 20% and 30% nanoparticles for an alternating current (AC) magnetic field. Our results demonstrate that the simplification of the synthetic methodology for magnetic nanoparticles with a high specific absorption rate (SAR) shows potential for hyperthermia application.  相似文献   
49.
The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/mMNP)CTt). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR≈/mMNP, where β is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.  相似文献   
50.
微波热疗机模糊控制器设计   总被引:2,自引:0,他引:2  
微波热疗是一种治疗肿瘤的新方法 ,主要利用微波能沉积于病灶区时所产生的高温杀灭肿瘤细胞。但其温度控制问题属于不确定性问题 ,采用经典控制论设计控制系统遇到障碍。模糊技术是解决不确定性问题的一种有效手段 ,将模糊控制技术应用于微波医疗设备是一种的新的尝试 ,并且收到较为理想的效果  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号