首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
  国内免费   2篇
化学   8篇
物理学   47篇
无线电   5篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   10篇
  2008年   7篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
21.
Manganese zinc iron magnetic nanoparticles were synthesized by a co-precipitation method for application as hyperthermia inducing agents. The structure, morphology and magnetic properties of the nanoparticles are characterized using scanning electron microscopy, X-ray diffraction, and a superconducting quantum interference device. The magnetic properties being investigated include Curie temperature, saturation magnetization, remnant magnetization, coercive field, and hysteresis. The study showed that adjusting the Mn contribution to the particles contributed to the adjustment of all magnetic properties of the complex.  相似文献   
22.
Hyperthermic CoFe2O4 nanoparticle (CFO NP)/polymer hybrids were synthesized by hydrolysis–condensation from a complex of Co and Fe possessing methacrylate ligands. Single-crystal analysis revealed that the complex consisted of two Co and four Fe metal atoms coordinated by methacrylate and 2-methoxyethoxy groups. The complex was copolymerized with 2-hydroxyethyl methacrylate (HEMA) and the resulting copolymer was then hydrolyzed to form a CFO NP/copolymer of poly(methacrylate) and poly(2-hydroxyethyl methacrylate) hybrid. Copolymerization with HEMA enhanced the stability of the hybrid in water. The size and magnetic properties of CFO in the hybrid were controlled by adjusting the hydrolysis conditions. Moreover, the hybrid generated heat under an alternating current magnetic field; its exothermal properties depended on the magnetic properties of the hybrid, the strength of the applied field, and the CFO NP content in the agar phantom matrix.  相似文献   
23.
Magnetic nanocomposite has been synthesized successfully using biopolymer route which acts as a source of carbon for carbide formation. The present approach based on thermal decomposition represents a considerable advance over previous reports that often use high-energy procedures or costly and hazardous precursors. X-ray diffraction, high-resolution transmission electron microscopy and vibrating sample magnetometer have been used to characterize the composites. Multi phase formation is evident from X-ray diffraction in the as-prepared samples. Phase confirmation was further done from M (magnetization) versus T (temperature) curve indicating presence of different phases of carbide along with iron oxide. TEM study suggests formation of cuboidal shape nanocomposite using two different quenching conditions. Transmission electron microscopy also confirmed the formation of carbon layer in the vicinity of the Fe3O4/Fe3C nanoparticles. The magnetic measurement shows that the composite nanoparticles exhibit a maximum magnetization of 60 emu g−1 at room temperature. Biocompatibility study with three different cell lines (HeLa, MCF-7 and L929) confirms that these nanocomposites are biocompatible. Temperature versus time measurement in an AC field suggests good heating ability of the samples. These investigations indicate that these nanocomposites may be useful for bioapplications, in particular for hyperthermia.  相似文献   
24.
A 4×4 planar array of modified box-horns as a microwave hyperthermia applicator is theoretically studied to characterize power deposition (SAR) in heating tissue (muscle) at 2450 MHz. A modified box-horn is a novel improved version of conventional box-horn in which horn exciting the box waveguide is flared in both E-and H-planes. Modified box-horn supports TE10 and TE30 modes. The amplitude distribution over the H-plane of the box-horn aperture is a closer approximation to the uniform distribution. It is proposed that the interior of the box-horn be filled with water to provide a better impedance match to biological tissue. By applying Fresnel-Kirchhoff scalar diffraction field theory, the expression for electric field in heating region is derived and distribution of specific absorption rate (SAR) in that region due to planar array of modified box-horns as direct contact applicator is evaluated at 2450 MHz. The results of modified box-horn array are compared with those of a single modified box-horn operating at the same frequency. Results demonstrate that planar array of modified box-horns offers improvement in SAR distribution and penetration depth. It is shown that by changing the phase and amplitude of excitation of the modified box-horns of the array, the relative amplitude and position of the hot spot can be changed. The present analysis is validated through the results obtained by plane wave spectral technique.  相似文献   
25.
A facile method of fabricating novel heat-generating membranes composed of electrospun polyurethane (PU) nanofibers decorated with superparamagnetic iron oxide nanoparticles (NPs) is reported. Electrospinning was used to produce polymeric nanofibrous matrix, whereas polyol immersion technique allowed in situ assembly of well-dispersed Fe3O4 NPs on the nanofibrous membranes without any surfactant, and without sensitizing and stabilizing reagent. The assembly phenomena can be explained by the hydrogen-bonding interactions between the amide groups in the PU matrix and the hydroxyl groups capped on the surface of the Fe3O4 NPs. The prepared nanocomposite fibers showed acceptable magnetization value of 33.12 emu/g, after measuring the magnetic hysteresis loops using SQUID. Moreover, the inductive heating property of electrospun magnetic nanofibrous membranes under an alternating current (AC) magnetic field was investigated. We observed a progressive increase in the heating rate with the increase in the amount of magnetic Fe3O4 NPs in/on the membranes. The present electrospun magnetic nanofibrous membrane may be a potential candidate as a novel heat-generating substrate for localized hyperthermia cancer therapy.  相似文献   
26.
In this work we study the heating efficiency of Fe/MgO magnetic core/biocompatible shell nanoparticles and their in vitro application in magnetic hyperthermia on cancer cells. Different human breast cancer cell lines were used to assess the suitability of nanoparticles for in vivo application. The experiments revealed a very good cytotoxicity profile and significant uptake efficiency together with relatively high specific absorption rates and fast thermal response, features that are crucial for adequate thermal efficiency and minimum duration of treatment.  相似文献   
27.
Magnetic nanoparticles for thermotherapy must be biocompatible and possess high thermal efficiency as heating elements. The biocompatibility of Fe3O4 (20-30 nm), ZnFe2O4 (15-30 nm) and NiFe2O4 (20-30 nm) nanoparticles was studied using a cytotoxicity colony formation assay and a cell viability assay. The Fe3O4 sample was found to be biocompatible on HeLa cells. While ZnFe2O4 and NiFe2O4 were non-toxic at low concentrations, HeLa cells exhibited cytotoxic effects when exposed to concentrations of 100 μg/ml nanoparticles.  相似文献   
28.
A great deal of attention has been paid to the use of magnetite nanoparticles as heating elements in the research of magnetic fluid hyperthermia. However, these particles have a relatively low magnetization and as a result, have low heating efficiency as well as difficulties in detection applications. To maximize heating efficiency we propose and show the use of high-moment Fe(Co)-Au core-shell nanoparticles. Using a physical vapor nanoparticle-deposition technique the high-moment nanoparticles were synthesized. The water-soluble particles were placed in an AC magnetic field of variable magnetic field frequencies. The temperature rise was measured and compared to theory.  相似文献   
29.
In order to improve the efficacy of magnetic fluid hyperthermia (MFH) mediators, we synthesised cobalt ferrite nanoparticles with different sizes (between 5 and 7 nm) via successive polyol synthesis. The static and dynamic magnetic properties of the prepared particles, dispersed in a solid matrix, were investigated in order to evaluate the possibility of applying cobalt ferrite as magnetic susceptors in MFH. The effect on magnetic properties coming from the surface anchoring of the model molecule cetyl phosphate, was also investigated.  相似文献   
30.
Multifunctional FeCo nanoparticles with narrow size distribution (less than 8% standard deviation) were fabricated by a novel physical vapor nanoparticle-deposition technique. The size of magnetic nanoparticles was controlled in the range from 3 to 100 nm. The shape of nanoparticles was controlled to be either spherical or cubic. The particles had a high specific magnetization of 226 emu/g at low saturation field, which is much higher than the currently commercialized iron oxide nanoparticles. Core–shell-type Co(Fe)–Au nanoparticles were produced by the same technique. They combined the high moment of the Co(Fe) core with the plasmonic feature of a Au shell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号