首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12227篇
  免费   1644篇
  国内免费   875篇
化学   3417篇
晶体学   43篇
力学   270篇
综合类   53篇
数学   172篇
物理学   3297篇
无线电   7494篇
  2024年   49篇
  2023年   189篇
  2022年   328篇
  2021年   404篇
  2020年   483篇
  2019年   398篇
  2018年   330篇
  2017年   522篇
  2016年   635篇
  2015年   711篇
  2014年   966篇
  2013年   906篇
  2012年   1101篇
  2011年   932篇
  2010年   700篇
  2009年   784篇
  2008年   815篇
  2007年   865篇
  2006年   685篇
  2005年   469篇
  2004年   445篇
  2003年   360篇
  2002年   288篇
  2001年   204篇
  2000年   204篇
  1999年   163篇
  1998年   176篇
  1997年   149篇
  1996年   93篇
  1995年   77篇
  1994年   64篇
  1993年   62篇
  1992年   45篇
  1991年   36篇
  1990年   38篇
  1989年   14篇
  1988年   14篇
  1987年   11篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
251.
Recently, a novel enzymatic method was developed for determination of homocysteine. This method utilizes the electrochemical hydrogen sulfide sensor along with methionine α,γ‐lyase to accomplish the fast, accurate, sensitive and selective measurements. As a continuation of this work, another enzyme, homocysteine α,γ‐lyase, was used and the parallel experiments of using both enzymes were carried out against the effect of pH, sensitivity, linearity, and interferences, in an intended comparison between these two enzymes. The excellent linearity of amperometric currents against homocysteine concentrations, high sensitivities and low detection limits for both enzymes reconfirmed that the electrochemical method is superior over other analytical means. The high enzymatic activity of methionine α,γ‐lyase surpassing homocysteine α,γ‐lyase endowed the former higher sensitivity, lower detection limit and faster response than the latter, suggesting methionine α,γ‐lyase a better candidate for homocysteine measurement by electrochemical method. The differences between these two enzymes on the trends of response time and sensitivity at different pH environments, reactivity toward several forms of homocysteine as well as on the interference from several agents were also addressed and discussed.  相似文献   
252.
New polymeric membrane cadmium‐ion selective sensors have been prepared by incorporating nitrogen and sulfur containing tridentate ligands as the ionophores into the plasticized PVC membranes. Poly(vinyl chloride) (PVC) based membranes of potassium hydrotris[N‐(2,6‐xylyl)thioimdazolyl) borate] (KTt2,6‐xylyl) and potassium hydrotris(3‐phenyl‐5‐methylpyrazolyl) borate (KTpPh,Me) with sodium tetraphenyl borate (NaTPB) as an anionic excluder and dibutylphthalate (DBP), tributylphthalate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE) as plasticizing solvent mediators were investigated in different compositions. KTt2,6‐xylyl was found to be a selective and sensitive ion carrier for Cd(II) membrane sensor. A membrane composed of KTt2,6‐xylyl:NaTPB:PVC:DBP with the % mole ratio 2.3 : 1.1 : 34.8 : 61.8 (w/w) works well over a very wide concentration range (7.8×10?8–1.0×10?2 M) with a Nernstian slope of 29.4±0.2 mV/decades of activity between pH values of 3.5 to 9.0 with a detection limit of 4.37×10?8 M. The sensor displays very good discrimination toward Cd(II) ions with regard to most common cations. The proposed sensor shows a short response time for whole concentration range (ca. 8 s). The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (Triton X‐100) surfactants were investigated on the potentiometric properties of proposed cadmium‐selective sensor. The proposed sensor based on KTt2,6‐xylyl ionophore has also been used for the direct determination of cadmium ions in different water samples and human urine samples.  相似文献   
253.
Sangeun Cho  Chan Kang 《Electroanalysis》2007,19(22):2315-2320
A nonenzymatic glucose sensor with good selectivity for the ascorbic acid oxidation is presented. After the gold polycrystalline electrode was subjected to amalgamation treatment, two advantageous effects were observed. One is the enhancement of the surface roughness and the other is an increase in the catalytic current in the glucose oxidation. Besides the known first effect, the latter provided another advantageous effect in a fabrication of nonenzymatic glucose sensor. Using a gold electrode subjected to amalgamation treatment for 60 s, two calibration curves for glucose oxidation at two different potentials of ?0.1 V and 0.25 V were obtained and compared. At the potential of ?0.1 V, at which no ascorbic acid was oxidized and no interference effect was observed, a current sensitivity of 16 μA cm?2 mM?1 from zero to 10 mM glucose concentration range was obtained. At the other potential of 0.25 V, at which ascorbic acid was easily oxidized, a satisfactory calibration curve with negligible ascorbic acid interference was also obtained together with a more enhanced current sensitivity of 32 μA cm?2 mM?1.  相似文献   
254.
We demonstrate the concept of Pb2+ cation sensing using the emissive Ir(III) complex (1) based on the associated decrease of room-temperature phosphorescence upon forming the 1:1 adduct 1-Pb2+. Complex 1 bears two cyclometalated N-phenyl pyrazoles with pyrazoles residing at the mutual trans dispositions as well as one 3,5-di(pyridyl) pyrazolate chelate. X-ray structural analyses on the adduct 1-Pb2+ confirm the key function of 3,5-di(pyridyl) pyrazolate as it forms chelate interaction with the metal analytes, while quenching of phosphorescent emission is probably due to the Pb2+ induced perturbation, which increases the intersystem crossing to another lower-lying triplet state for the host chromophore via an enhanced spin–orbit coupling.  相似文献   
255.
吴伟平  周洁  方玉婷  刘扬  顾海鹰 《化学通报》2016,79(11):1041-1045,1057
制备一种壳核结构的Fe3O4@Ag磁性纳米粒子,将该纳米粒子通过壳聚糖(CS)修饰在玻碳电极(GCE)表面,制备了对杀螟硫磷有灵敏电化学传感的Fe3O4@Ag/CS/GCE。应用透射电镜(TEM)和紫外可见光谱(UV-VIS),对Fe3O4@Ag纳米粒子进行表征。运用电化学交流阻抗(EIS)、循环伏安法(CV)和时间电流法(I-T)来研究杀螟硫磷电化学特性。研究发现,在1.74×10-7~3.27×10–4 mol/L浓度范围内,该传感器可以实现对杀螟硫磷的快速检测,检测限为5.7×10-8 mol/L(S/N=3)  相似文献   
256.
杨阳  霍文珊  周政  张琪  曾涵 《无机化学学报》2016,32(12):2117-2128
采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和形貌,测试了纳米复合物固酶前后的导电性能的变化,研究了纳米复合物修饰电极上固定漆酶的直接电化学行为,评估了该电极的催化氧还原效能以及作为电化学传感器检测氧分子的性能。实验结果表明该电极在不含电子介体的溶液中以酶活性中心T2作为首要电子受体,将得到电子传递给化学吸附的氧气使其被电还原,其表观电子迁移速率为0.017 s~(-1),且具有良好的催化氧还原性能(氧还原起始电位:460 m V vs NHE,转化氧分子为水的表观速率常数为2.6×10-4 s~(-1)),酶电催化氧还原为水分子步骤为反应的速控步。该电极作为电化学传感器对氧具有极低检测限(0.20μmol·L~(-1)),宽线性响应范围(0.4~7.5μmol·L~(-1))以及对底物高亲和力(KM=122.4μmol·L~(-1))等优势。  相似文献   
257.
The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene–carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene–CNT–IL nanocomposite (graphene–CNT–IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene–CNT–IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene–CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties.  相似文献   
258.
The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu2+ was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu2+, sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu2+ concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu2+ in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu2+ in living cells.  相似文献   
259.
The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells.  相似文献   
260.
In recent years, extensive researches are focused on the fluorescent carbon nanoparticles (CNPs) due to their excellent photochemical, biocompatible and water-soluble properties. However, these synthesis methods are generally suffered from tedious processes. In this paper, fluorescent carbon nanoparticles are synthesized by a facile, one-pot, low-temperature method with trypsin and dopamine as precursors. The synthesis process avoids any heating operation and organic solvent, which provides a “green” and effective preparation route. The obtained CNPs exhibit excellent water-solubility, salt-tolerance and photostability. Based on the synergistic action of the inner filter effect and static quenching mechanism, the CNPs are exploited as a “turn-off” fluorescence sensor for sensitive and selective detection of Fe3+ ions. The probe shows a wide linear range from 0.1 to 500 μM, with a limit of detection of 30 nM. Furthermore, the as-fabricated fluorescent sensing system is successfully applied to the analysis of Fe3+ in biological samples such as human urine and serum samples with satisfactory recoveries (92.8–113.3%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号