首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12175篇
  免费   1695篇
  国内免费   874篇
化学   3417篇
晶体学   43篇
力学   270篇
综合类   53篇
数学   172篇
物理学   3296篇
无线电   7493篇
  2024年   49篇
  2023年   189篇
  2022年   328篇
  2021年   403篇
  2020年   483篇
  2019年   397篇
  2018年   330篇
  2017年   522篇
  2016年   635篇
  2015年   711篇
  2014年   966篇
  2013年   906篇
  2012年   1101篇
  2011年   932篇
  2010年   700篇
  2009年   784篇
  2008年   815篇
  2007年   865篇
  2006年   685篇
  2005年   469篇
  2004年   445篇
  2003年   360篇
  2002年   288篇
  2001年   204篇
  2000年   204篇
  1999年   163篇
  1998年   176篇
  1997年   149篇
  1996年   93篇
  1995年   77篇
  1994年   64篇
  1993年   62篇
  1992年   45篇
  1991年   36篇
  1990年   38篇
  1989年   14篇
  1988年   14篇
  1987年   11篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
201.
Nitrile butadiene rubber, NBR, structural foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples after the application of cyclic stress-strain were measured. The effect of the cyclic stress-strain on strain energy density of ADC/K foaming agent-filled NBR rubber composites was studied. The mechanical parameters were found to depend on the foaming agent concentration and on the pre-cyclic fatigue number. Results also indicated that the strain energy decreased with filler concentration.The effects of the cyclic stress-strain on the conductivity of ADC/K foaming agent-filled NBR rubber composites were studied. The electrical properties were found to depend on the foaming agent concentration, the strain amplitude and the number of stress-strain cycles of pre-strain. This study was assisted by the current-voltage characteristics which were measured under the effect of different compression ratios: 0%, 5%, 10%, 15%, 20%, 25% and 30%. The free current carrier mobility and the equilibrium concentration of charge carriers in the conduction band were produced as functions of compressive strain. Results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor.  相似文献   
202.
The present work studies the adsorption behaviour of mercury species on different soil components (montmorillonite, kaolinite and humic acid) spiked with CH3HgCl and CH3HgOH at different pH values, by using XAS techniques and bacterial mercury sensors in order to evaluate the availability of methyl mercury on soil components. The study details and discusses different aspects of the adsorption process, including sample preparation (with analysis of adsorbed methyl mercury by ICP-OES), the various adsorption conditions, and the characterization of spiked samples by XAS techniques performed at two synchrotron facilities (ESRF in Grenoble, France and HASYLAB in Hamburg, Germany), as well as bioavailability studies using mercury-specific sensor bacteria. Results show that XAS is a valuable qualitative technique that can be used to identify the bonding character of the Hg in mercury environment. The amount of methyl in mercury adsorbed to montmorillonite was pH-dependent while for all soil components studied, the bond character was not affected by pH. On the other hand, clays exhibited more ionic bonding character than humic acids did with methyl mercury. This interaction has a higher covalent character and so it is more stable for CH3HgOH than for CH3HgCl, due to the higher reactivity of the hydroxyl group arising from the possible formation of hydrogen bonds.The bioavailability of methyl mercury adsorbed to montmorillonite, kaolinite and humic acids was measured using recombinant luminescent sensor bacterium Escherichia coli MC1061 (pmerBRBSluc). In case of contact exposure (suspension assays), the results showed that the bioavailability was higher than it was for exposure to particle-free extracts prepared from these suspensions. The highest bioavailability of methyl mercury was found in suspensions of montmorillonite (about 50% of the total amount), while the bioavailabilities of kaolinite and humic acids were five times lower (about 10%). The behaviour of methyl mercury in the presence of montmorillonite could be explained by the more ionic bonding character of this system, in contrast to the more covalent bonding character observed for humic acids. Thus, XAS techniques seem to provide promising tools for investigating the mechanisms behind the observed bioavailabilities of metals in various environmental matrices, an important topic in environmental toxicology.  相似文献   
203.
This paper describes a copper selective optical chemical sensor based on static quenching of the fluorescence of 2-(2′-hydroxyphenyl)benzoxazole entrapped in a poly(vinyl chloride) (PVC) membrane. The effect of the composition of the sensing membrane was studied, and experimental conditions were optimized. The sensors exhibit stable response over the concentration range from 4.0 × 10−8 M to 5.0 × 10−5 M Cu2+ at pH 4.0-6.5, and a high selectivity. The response time for Cu2+ with concentration ≤5 × 10−6 M is less than 7 min. The optode can be regenerated using 0.1 M HCl and acetate buffer solution. The sensor has been used for direct measurement of copper content in river water samples with a relative error less than 4% with reference to that obtained by atomic absorption spectrometry.  相似文献   
204.
One-point (Mettler) and many-point (Netzsch) heat flow calibration of a DSC is discussed. It is shown that the two types of calibration are the alternative extremes between quick but rough procedure and time-consuming but accurate one. One-point calibration compares a typical function k(T) at the melting point of indium with the measured value for particular DSC and multiplies k(T) by a scaling factor. Many-point calibration is based on general mathematical procedure, namely fitting a set of experimental values of sensitivity to a polynomial. The polynomial coefficients are evaluated by the method of least squares. Based on the relationship between the sensitivity of a thermocouple and calibration coefficient of a DSC sensor made from it, two-point heat flow calibration is suggested. This is an optimal calibration procedure, for the relationship contains only two unknown coefficients. An example of how to perform the two-point calibration with Netzsch-Proteus Software is described in the Appendix.  相似文献   
205.
An ultramicro pH sensor has been constructed based on a thin polyaniline film that was electrochemically deposited onto a carbon fiber nanometer-size electrode. The substrate nanoelectrodes were fabricated using ion-beam conically etched carbon fibers with tip diameters ranging ca. from 100 to 500 nm. The polyaniline film was deposited from HCl solution containing the aniline monomer by cycling the potential between −0.2 and +1.0 V. The electromotive force (emf) signal between the pH sensitive polyaniline-coated nanoelectrode and an Ag/AgCl reference electrode was linear over the pH range of 2.0-12.5 with a slightly super-Nernstian slope of ca. −60 mV/pH unit. Response times ranged from several sec at pHs around 7 up to 2 min at pH 12.5. The proposed pH nanoelectrode displayed high ion selectivity with respect to K+, Na+, Ca2+, and Li+, with log KH,M values around −12 and has a working lifetime of about 20 days. Key parameters important for the pH nanoelectrode performance, including polyaniline film preparation, selectivity, response time, temperature dependence, relative coating thickness, stability, and reproducibility, have been characterized and optimized. The performance of the pH nanoelectrode was examined by measuring the pH of several real samples including body fluids (serum, urine) and low ionic strength water samples (rain, deionized and tap water). The results agreed very well with those obtained by using commercial glass pH electrodes. The proposed pH nanoelectrode demonstrated attractive properties and seems particularly promising for use under physiological conditions.  相似文献   
206.
A new type of potentiometric sensor based on a recently constructed carbon ionic liquid electrode (CILE) is described. Two kinds of ionic liquids, i.e., N‐octylpyridinium hexafluorophosphate (OPFP) and 1‐butyl‐3‐methylimidazoluim hexafluorophosphate (BMFP) were tested as binder for construction of the carbon composite electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with those of the traditional carbon paste electrode (CPE). The results indicate that potentiometric sensors constructed with ionic liquid show an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to CPE.  相似文献   
207.
Recently, a novel enzymatic method was developed for determination of homocysteine. This method utilizes the electrochemical hydrogen sulfide sensor along with methionine α,γ‐lyase to accomplish the fast, accurate, sensitive and selective measurements. As a continuation of this work, another enzyme, homocysteine α,γ‐lyase, was used and the parallel experiments of using both enzymes were carried out against the effect of pH, sensitivity, linearity, and interferences, in an intended comparison between these two enzymes. The excellent linearity of amperometric currents against homocysteine concentrations, high sensitivities and low detection limits for both enzymes reconfirmed that the electrochemical method is superior over other analytical means. The high enzymatic activity of methionine α,γ‐lyase surpassing homocysteine α,γ‐lyase endowed the former higher sensitivity, lower detection limit and faster response than the latter, suggesting methionine α,γ‐lyase a better candidate for homocysteine measurement by electrochemical method. The differences between these two enzymes on the trends of response time and sensitivity at different pH environments, reactivity toward several forms of homocysteine as well as on the interference from several agents were also addressed and discussed.  相似文献   
208.
New polymeric membrane cadmium‐ion selective sensors have been prepared by incorporating nitrogen and sulfur containing tridentate ligands as the ionophores into the plasticized PVC membranes. Poly(vinyl chloride) (PVC) based membranes of potassium hydrotris[N‐(2,6‐xylyl)thioimdazolyl) borate] (KTt2,6‐xylyl) and potassium hydrotris(3‐phenyl‐5‐methylpyrazolyl) borate (KTpPh,Me) with sodium tetraphenyl borate (NaTPB) as an anionic excluder and dibutylphthalate (DBP), tributylphthalate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE) as plasticizing solvent mediators were investigated in different compositions. KTt2,6‐xylyl was found to be a selective and sensitive ion carrier for Cd(II) membrane sensor. A membrane composed of KTt2,6‐xylyl:NaTPB:PVC:DBP with the % mole ratio 2.3 : 1.1 : 34.8 : 61.8 (w/w) works well over a very wide concentration range (7.8×10?8–1.0×10?2 M) with a Nernstian slope of 29.4±0.2 mV/decades of activity between pH values of 3.5 to 9.0 with a detection limit of 4.37×10?8 M. The sensor displays very good discrimination toward Cd(II) ions with regard to most common cations. The proposed sensor shows a short response time for whole concentration range (ca. 8 s). The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (Triton X‐100) surfactants were investigated on the potentiometric properties of proposed cadmium‐selective sensor. The proposed sensor based on KTt2,6‐xylyl ionophore has also been used for the direct determination of cadmium ions in different water samples and human urine samples.  相似文献   
209.
Poly(vinyl chloride) (PVC)-based membrane of pentathia-15-crown-5 exhibits good potentiometric response for Hg2+ over a wide concentration range (2.51 × 10−5 to 1.00 × 10−1 mol dm−3) with a slope of 32.1 mV per decade of Hg2+ concentration. The response time of the sensor is as fast as 20 s. The electrode has been used for a period of six weeks and exhibits fairly good discriminating ability towards Hg2+ in comparison to alkali, alkaline and some heavy metal ions. The electrode can be used in the pH range from 2.7 to 5.0.  相似文献   
210.
An ultra-thin layer of polypyrrole can be coated on non-conducting substrates, e.g., acrylic, by dip coating into a colloidal suspension of polypyrrole. This thin coating reversibly combines with low concentrations of ammonia or hydrazine with a concomitant reversible increase in resistance; 0.1 μg cm?3 of ammonia can readily be detected with a 1 cm2 area of sensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号