首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58220篇
  免费   7343篇
  国内免费   5075篇
化学   12521篇
晶体学   988篇
力学   12344篇
综合类   647篇
数学   18440篇
物理学   14487篇
无线电   11211篇
  2024年   147篇
  2023年   623篇
  2022年   1021篇
  2021年   1267篇
  2020年   1629篇
  2019年   1348篇
  2018年   1340篇
  2017年   1939篇
  2016年   2306篇
  2015年   1925篇
  2014年   3112篇
  2013年   4181篇
  2012年   3590篇
  2011年   4035篇
  2010年   3369篇
  2009年   3748篇
  2008年   3717篇
  2007年   3750篇
  2006年   3391篇
  2005年   3069篇
  2004年   2669篇
  2003年   2442篇
  2002年   2174篇
  2001年   1842篇
  2000年   1650篇
  1999年   1517篇
  1998年   1350篇
  1997年   1160篇
  1996年   1001篇
  1995年   906篇
  1994年   769篇
  1993年   604篇
  1992年   634篇
  1991年   481篇
  1990年   398篇
  1989年   298篇
  1988年   222篇
  1987年   170篇
  1986年   105篇
  1985年   157篇
  1984年   146篇
  1983年   76篇
  1982年   85篇
  1981年   65篇
  1980年   32篇
  1979年   46篇
  1978年   33篇
  1977年   37篇
  1976年   14篇
  1957年   13篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
151.
There is a growing interest in developing numerical tools to investigate the onset of physical instabilities observed in experiments involving viscoelastic flows, which is a difficult and challenging task as the simulations are very sensitive to numerical instabilities. Following a recent linear stability analysis carried out in order to better understand qualitatively the origin of numerical instabilities occurring in the simulation of flows viscoelastic fluids, the present paper considers a possible extension for more complex flows. This promising method could be applied to track instabilities in complex (i.e. essentially non‐parallel) flows. In addition, results related to transient growth mechanism indicate that it might be responsible for the development of numerical instabilities in the simulation of viscoelastic fluids. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
152.
应用自动微分的Newton-PCG算法   总被引:2,自引:0,他引:2  
一类新的使用符号微分的Newton-PCG型算法在文献[1]和[2]被导出来了。本文建立和研究应用自动微分的相应的Newton-PCG算法,理论分析和数值实验结果显示应用自动微分之后,目标函数的维数或复杂性越大,Newton-PCG算法对Newton法的改进越显著。  相似文献   
153.
We present a practical polynomial-time algorithm for computing the zeta function of a Kummer curve over a finite field of small characteristic. Such algorithms have recently been obtained using a method of Kedlaya based upon Monsky–Washnitzer cohomology, and are of interest in cryptography. We take a different approach. The problem is reduced to that of computing the L-function of a multiplicative character sum. This latter task is achieved via a cohomological formula based upon the work of Dwork and Reich. We show, however, that our method and that of Kedlaya are very closely related.Dedicated to the memory of Gian-Carlo Rota  相似文献   
154.
黄翔 《运筹学学报》2005,9(4):74-80
近年来,决定椭圆型方程系数反问题在地磁、地球物理、冶金和生物等实际问题上有着广泛的应用.本文讨论了二维的决定椭圆型方程系数反问题的数值求解方法.由误差平方和最小原则,这个反问题可化为一个变分问题,并进一步离散化为一个最优化问题,其目标函数依赖于要决定的方程系数.本文着重考察非线性共轭梯度法在此最优化问题数值计算中的表现,并与拟牛顿法作为对比.为了提高算法的效率我们适当选择加快收敛速度的预处理矩阵.同时还考察了线搜索方法的不同对优化算法的影响.数值实验的结果表明,非线性共轭梯度法在这类大规模优化问题中相对于拟牛顿法更有效.  相似文献   
155.
By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.  相似文献   
156.
A parallel DSMC method based on a cell‐based data structure is developed for the efficient simulation of rarefied gas flows on PC‐clusters. Parallel computation is made by decomposing the computational domain into several subdomains. Dynamic load balancing between processors is achieved based on the number of simulation particles and the number of cells allocated in each subdomain. Adjustment of cell size is also made through mesh adaptation for the improvement of solution accuracy and the efficient usage of meshes. Applications were made for a two‐dimensional supersonic leading‐edge flow, the axi‐symmetric Rothe's nozzle, and the open hollow cylinder flare flow for validation. It was found that the present method is an efficient tool for the simulation of rarefied gas flows on PC‐based parallel machines. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
157.
A preconditioning approach based on the artificial compressibility formulation is extended to solve the governing equations for unsteady turbulent reactive flows with heat release, at low Mach numbers, on an unstructured hybrid grid context. Premixed reactants are considered and a flamelet approach for combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell‐vertex finite volume method is adopted as a discretisation scheme. Artificial dissipation terms for hybrid grids are explicitly added to ensure a stable, discretised set of equations. A second‐order, explicit, hybrid Runge–Kutta scheme is applied for the time marching in pseudo‐time. A time derivative of the dependent variable is added to recover the time accuracy of the preconditioned set of equations. This derivative is discretised by an implicit, second‐order scheme. The resulting scheme is applied to the calculation of an infinite planar (one‐dimensional) turbulent premixed flame propagating freely in reactants whose turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained with the proposed method proves to be excellent when compared to the data available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
158.
The flow around spherical, solid objects is considered. The boundary conditions on the solid boundaries have been applied by replacing the boundary with a surface force distribution on the surface, such that the required boundary conditions are satisfied. The velocity on the boundary is determined by extrapolation from the flow field. The source terms are determined iteratively, as part of the solution. They are then averaged and are smoothed out to nearby computational grid points. A multi‐grid scheme has been used to enhance the computational efficiency of the solution of the force equations. The method has been evaluated for flow around both moving and stationary spherical objects at very low and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at creeping flow and at Re=100. The multi‐grid scheme is shown to enhance the convergence rate up to a factor 10 as compared to single grid approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
159.
The process of single liquid drop impact on thin liquid surface is numerically simulated with moving particle semi‐implicit method. The mathematical model involves gravity, viscosity and surface tension. The model is validated by the simulation of the experimental cases. It is found that the dynamic processes after impact are sensitive to the liquid pool depth and the initial drop velocity. In the cases that the initial drop velocity is low, the drop will be merged with the liquid pool and no big splash is seen. If the initial drop velocity is high enough, the dynamic process depends on the liquid depth. If the liquid film is very thin, a bowl‐shaped thin crown is formed immediately after the impact. The total crown subsequently expands outward and breaks into many tiny droplets. When the thickness of the liquid film increases, the direction of the liquid crown becomes normal to the surface and the crown propagates outward. It is also found that the radius of the crown is described by a square function of time: rC = [c(t ? t0)]0.5. When the liquid film is thick enough, a crown and a deep cavity inside it are formed shortly after the impact. The bottom of the cavity is initially oblate and then the base grows downward to form a sharp corner and subsequently the corner moves downward. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
160.
A least‐squares meshfree method based on the first‐order velocity–pressure–vorticity formulation for two‐dimensional incompressible Navier–Stokes problem is presented. The convective term is linearized by successive substitution or Newton's method. The discretization of all governing equations is implemented by the least‐squares method. Equal‐order moving least‐squares approximation is employed with Gauss quadrature in the background cells. The boundary conditions are enforced by the penalty method. The matrix‐free element‐by‐element Jacobi preconditioned conjugate method is applied to solve the discretized linear systems. Cavity flow for steady Navier–Stokes problem and the flow over a square obstacle for time‐dependent Navier–Stokes problem are investigated for the presented least‐squares meshfree method. The effects of inaccurate integration on the accuracy of the solution are investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号