首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88264篇
  免费   9472篇
  国内免费   14783篇
化学   64613篇
晶体学   2651篇
力学   1329篇
综合类   591篇
数学   5061篇
物理学   20117篇
无线电   18157篇
  2024年   323篇
  2023年   1820篇
  2022年   2586篇
  2021年   2972篇
  2020年   3135篇
  2019年   2923篇
  2018年   2331篇
  2017年   3141篇
  2016年   3286篇
  2015年   3011篇
  2014年   4079篇
  2013年   7223篇
  2012年   5523篇
  2011年   6115篇
  2010年   5207篇
  2009年   6103篇
  2008年   5940篇
  2007年   6065篇
  2006年   5754篇
  2005年   5012篇
  2004年   4516篇
  2003年   3836篇
  2002年   3258篇
  2001年   2630篇
  2000年   2433篇
  1999年   1917篇
  1998年   1646篇
  1997年   1408篇
  1996年   1225篇
  1995年   1160篇
  1994年   1082篇
  1993年   899篇
  1992年   764篇
  1991年   598篇
  1990年   408篇
  1989年   349篇
  1988年   287篇
  1987年   185篇
  1986年   159篇
  1985年   168篇
  1984年   136篇
  1983年   68篇
  1982年   108篇
  1981年   141篇
  1980年   108篇
  1979年   109篇
  1978年   77篇
  1977年   79篇
  1976年   52篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Highly dispersed palladium nanoclusters incorporated on amino‐functionalized silica sphere surfaces (Pd/SiO2‐NH2) were fabricated by a simple one‐pot synthesis utilizing 3‐(2‐aminoethylamino)propyltrimethoxysilane (AAPTS) as coordinating agent. Uniform palladium nanoclusters with an average size of 1.1 nm can be obtained during the co‐condensation of tetraethyl orthosilicate and AAPTS owing to the strong interaction between palladium species and amino groups in AAPTS. The palladium particle size can be controlled by addition of AAPTS and plays a significant role in the catalytic performance. The Pd/SiO2‐NH2 catalyst exhibits high catalytic activity for succinic acid hydrogenation with 100% conversion and 94% selectivity towards γ‐butyrolactone using 1,4‐dioxane as solvent at 240°C and 60 bar for 4 h. Moreover, the Pd/SiO2‐NH2 catalyst is robust and readily reusable without loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
12.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
13.
CYP1A2 is important for metabolizing various clinically used drugs. Phenotyping of CYP1A2 may prove helpful for drug individualization therapy. Several HPLC methods have been developed for quantification of caffeine metabolites in plasma and urine. Aim of the present study was to develop a valid and simple HPLC method for evaluating CYP1A2 activity during exposure in xenobiotics by the use of human saliva. Caffeine and paraxanthine were isolated from saliva by liquid‐liquid extraction (chlorophorm/isopropanol 85/15v/v). Extracts were analyzed by reversed‐phase HPLC on a C18 column with mobile phase 0.1% acetic acid/methanol/acetonitrile (80/20/2 v/v) and detected at 273nm. Caffeine and paraxanthine elution times were <13min with no interferences from impurities or caffeine metabolites. Detector response was linear (0.10–8.00µg/ml, R2>0.99), recovery was >93% and bias <4.47%. Intra‐ and inter‐day precision was <5.14% (n=6). The limit of quantitation was 0.10µg/ml and the limit of detection was 0.018±0.002µg/mL for paraxanthine and 0.032±0.002µg/ml for caffeine. Paraxanthine/caffeine ratio of 34 healthy volunteers was significantly higher in smokers (p<0.001). Saliva paraxanthine/caffeine ratios and urine metabolite ratios were highly correlated (r=0.85, p<0.001). The method can be used for the monitoring of CYP1A2 activity in clinical practice and in studies relevant to exposure to environmental and pharmacological xenobiotics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
14.
In the present work we describe a two‐dimensional liquid chromatographic system (2D‐LC) with detection by mass spectrometry (MS) for the simultaneous separation of endogenous metabolites of clinical interest and excreted xenobiotics deriving from exposure to toxic compounds. The 2D‐LC system involves two orthogonal chromatographic modes, hydrophilic interaction liquid chromatography (HILIC) to separate polar endogenous metabolites and reversed‐phase (RP) chromatography to separate excreted xenobiotics of low and intermediate polarity. Additionally, the present proposal has the novelty of incorporating an on‐line sample treatment based on the use of restricted access materials (RAMs), which permits the direct injection of urine samples into the system. The work is focused on the instrumental coupling, studying all possible options and attempting to circumvent the problems of solvent incompatibility between the RAM device and the two chromatographic columns, HILIC and RP. The instrumental configuration developed, RAM‐HILIC‐RPLC‐MS/MS, allows the simultaneous assessment of urinary metabolites of clinical interest and excreted compounds derived from exposure to toxic agents with minimal sample manipulation. Thus, it may be of interest in areas such as occupational and environmental toxicology in order to explore the possible relationship between the two types of compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
15.
The effect of Re addition on the microstructure and hardening behaviour of the dual two-phase Ni3Al (L12) and Ni3V (D022) intermetallic alloy was investigated by scanning electron microscopy, transmission electron microscopy and Vickers hardness test. The two-phase eutectoid microstructure accompanying the Re-rich precipitates were observed in the channel region of the alloys in which Re substituted for Ni but not in those in which Re substituted for Al and V. The concomitant addition of Nb (or Ta) with Re more stabilized the two-phase eutectoid microstructure and consequently more induced the fine precipitates in the channel region. The annealing at temperatures below the eutectoid temperature was necessary to induce the fine precipitates in the channel region and thereby result in the precipitation hardening. The fine precipitation in the channel region and related hardening was attributed to the alloying feature so that Re is soluble in the A1 (fcc) phase at high temperatures and becomes less soluble in the two intermetallic phases decomposed from the A1 phase at low temperatures.  相似文献   
16.
A fluorene-centered perylene monoimide dimer, PMI-F-PMI with a partly non-coplanar configuration has been developed as a potential non-fullerene acceptor for organic solar cells (OSCs). The optimum power conversion efficiency (PCE) of the OSC based on PMI-F-PMI as acceptor and poly (3-hexyl thiophene) (P3HT) as donor is up to 2.30% after annealing at 150 °C. The PCE of 2.30% is the highest value for the OSCs based on P3HT donor and non-fullerene acceptor lies in that PMI-F-PMI’s lowest unoccupied molecular orbital (LUMO) level around −3.50 eV matches well with the donor P3HT to produce higher open-circuit voltage (Voc) of 0.98 V. Meanwhile, PMI-F-PMI makes remarkable contribution to devices’ light absorption as the maximum EQE (30%) of the devices is at 512 nm, same to the maximum absorption wavelength of PMI-F-PMI. The other favorable characteristics of PMI-F-PMI in bulk heterojunction (BHJ) active layers is proved through the photo current density measures, the relatively balanced electron–hole transport, and the smooth morphology with root mean square (RMS) value of 1.86 nm. For these advantages, PMI-F-PMI overwhelms its sister PMI-F and parent PMI as an acceptor in BHJ solar cells.  相似文献   
17.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
18.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
19.
We compare the current density–voltage (JV) and magnetoconductance (MC) response of a poly(3-hexyl-thiophene) (P3HT) device (Au/P3HT(350 nm)/Al) before and after annealing above the glass transition temperature of 150 °C under vacuum. There is a decrease of more than 3 orders of magnitude in current density due to an increase of the charge injection barriers after de-doping through annealing. An increase, approaching 1 order of magnitude, in the negative MC response after annealing can be explained by a shift in the Fermi level due to de-doping, according to the bipolaron mechanism. We successfully tune the charge injection barrier through re-doping by photo-oxidation. This leads to the charge injection and transport transitioning from unipolar to ambipolar, as the bias increases, and we model the MC response using a combination of bipolaron and triplet-polaron interaction mechanisms.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号