首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   111篇
  国内免费   50篇
化学   310篇
晶体学   1篇
力学   3篇
综合类   1篇
数学   7篇
物理学   78篇
无线电   164篇
  2024年   1篇
  2023年   16篇
  2022年   24篇
  2021年   43篇
  2020年   38篇
  2019年   28篇
  2018年   34篇
  2017年   25篇
  2016年   36篇
  2015年   39篇
  2014年   27篇
  2013年   43篇
  2012年   34篇
  2011年   24篇
  2010年   19篇
  2009年   11篇
  2008年   21篇
  2007年   26篇
  2006年   7篇
  2005年   18篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   4篇
  1999年   1篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有564条查询结果,搜索用时 47 毫秒
81.
Photodynamic therapy (PDT) has emerged as an attractive alternative in cancer therapy, but its therapeutic effects are limited by the nonselective subcellular localization and poor intratumoral retention of small-molecule photosensitizes. Here a fiber-forming nanophotosensitizer (PQC NF) that is composed of mitochondria targeting small molecules of amphiphilicity is reported. Harnessing the specific mitochondria targeting, the light-activated PQC NFs produce approximately 110-fold higher amount of reactive oxygen species in cells than free photosensitizers and can dramatically induce mitochondrial disruption to trigger intense apoptosis, showing 20–50 times better in vitro anticancer potency than traditional photosensitizers. As fiber-shaped nanomaterials, PQC NFs also demonstrated a long-term retention in tumor sites, solving the challenge of rapid clearance of small-molecule photosensitizers from tumors. With these advantages, PQC NFs achieve a 100% complete cure rate in both subcutaneous and orthotopic oral cancer models with the administration of only a single dose. This type of single small molecule-assembled mitochondria targeting nanofibers offers an advantageous strategy to improve the in vivo therapeutic effects of conventional PDT.  相似文献   
82.
The biomimetic enzyme activity of cerium oxide nanoparticles (CeNPs) prefers ultrasmall particle size and bare surface. Unfortunately, those two features are not favorable for its in vivo application due to easy aggregation and fast renal filtration. To take advantage of the activity of CeNP for cancer therapy, a homologous targeted cerium oxide nanoparticle system, targeted CeNP (T-CeNP), with the integration of a biodegradable dendritic mesoporous silica nanoparticle, superoxide dismutase and catalase mimicking CeNPs, and the camouflage coating of cancer cell membrane has been developed. Attributed to the homologous targeting effect of cancer cell membrane, nanoparticles with camouflage coating are retained in the tumor in an orthotopic breast cancer metastatic model. Subsequently, T-CeNP effectively hinders cancer-associated fibroblast transdifferentiation and reprograms it back to a normal fibroblast. Consequently, T-CeNP coupled with doxorubicin reduces the size of primary tumors and prevents the post-surgery lung metastasis and liver metastasis of breast cancer.  相似文献   
83.
Most anticancer drugs with broad toxicities are systematically administrated to cancer patients and their distribution in tumors is extremely low owing to hypoxia, which compromises the therapeutic efficacies of these cancer drugs. Consequently, a preponderant proportion of cancer drugs is distributed in off-target-healthy tissues, which often causes severe adverse effects. Precision cancer therapy without overdosing patients with drugs remains one of the most challenging issues in cancer therapy. Here, a novel concept of nanopoxia is presented, which is a tumor-hypoxia-based photodynamic nanoplatform for the release of therapeutic agents to achieve precision cancer therapy. Under tumor hypoxia, exposure of tumors to laser irradiation induces the fracture of polymer outer shell and produces anticancer reactive oxygen species, and switches 2D antimonene (Sb) nanomaterials to cytotoxic trivalent antimony to synergistically kill tumors. In preclinical cancer models, delivery of Sb nanomaterials to mice virtually ablates tumor growth without producing any detectable adverse effects. Mechanistically, the tumor hypoxia-triggered generation of trivalent antimony displays direct damaging effects on cancer cells and suppression of tumor angiogenesis. Together, the study provides a proof-of-concept of hypoxia-based precision cancer therapy by developing a novel nanoplatform that offers multifarious mechanisms of cancer eradication.  相似文献   
84.
Metal nanoclusters (NCs) have recently attracted great interest in biomedical applications due to their ultrasmall size, good biocompatibility, and unique molecule-like physical and chemical properties. Metal NCs can be rationally designed and integrated with various targeting moieties to achieve unique physicochemical properties and functions. For therapeutic applications, these multifunctional surface-modified NCs can provide distinctive advantages over native metal NCs, such as improved therapeutic effects and reduced side effects. In this review, the design principles of targeting strategies for metal NCs and their composites, including passive and active targeting, and physical and chemical targeting are first discussed. The authors then focus on the recent achievements in the application of metal NCs in targeted therapeutics, including chemotherapy, phototherapy, and radiotherapy. Finally, the authors’ perspectives on the challenges and opportunities of developing metal NCs in targeted therapeutics, further paving their way for potential clinical applications are provided.  相似文献   
85.
Traditional targeting approach utilizing biological ligands has to face the problems of limited receptors and tumor heterogeneity. Herein, a two‐step tumor‐targeting and therapy strategy based on inverse electron‐demand [4+2] Diels–Alder cycloaddition (iEDDA) is described. Owing to the unique acidic tumor microenvironment, an intravenous injection of tetrazine modified pH (low) insertion peptide could efficiently target and incorporate onto various cell surfaces in tumor tissue, such as cancer cells, vascular endothelial cells, and tumor‐associated fibroblasts. The “receptor‐like” tetrazine groups with a large amount and homogeneous intratumoral distribution could then serve as the baits to greatly amplify the tumor‐targeting ability of indocyanine green (ICG)‐loaded and trans‐cyclooctene (TCO)‐conjugated human serum albumin (HSA) nanoparticles (TCO‐HSA‐ICG NPs) via iEDDA after the second intravenous injection. Compared with the passive enhanced permeability and retention (EPR) effect and traditional active targeting approaches, the targeting performance and photothermal therapeutic effect based on the two‐step strategy are significantly enhanced, while no notable toxicity is observed. As acidity is a characteristic of solid tumor, the two‐step strategy can serve as a universal and promising modality for safe and high‐performance nanoparticle‐based antitumor therapy.  相似文献   
86.
The diagnosis of liver diseases is generally carried out via ultrasound imaging, computed tomography, and magnetic resonance imaging. The emerging photoacoustic imaging is an attractive alternative to diagnose even early stage of liver diseases providing high‐resolution anatomical and functional information in deep tissue noninvasively. However, the liver has insufficient photoacoustic contrast due to low optical absorbance in the near‐infrared windows. Here, a new hyaluronate–silica nanoparticle (HA–SiNP) conjugate for liver‐specific delivery and imaging for the diagnosis of liver diseases is developed. The HA–SiNP conjugates show high liver‐specific targeting efficiency, strong optical absorbance near‐infrared windows, excellent biocompatibility, and biodegradability. The liver‐specific targeting efficiency is verified by in vitro cellular uptake test, and in vivo and ex vivo photoacoustic imaging. In vivo photoacoustic imaging shows that photoacoustic amplitude in the liver injected with HA–SiNP conjugates is 4.4 times higher than that of the liver injected with SiNP. The biocompatibility and biodegradability of HA–SiNP conjugates are verified by cell viability test, optical spectrum analysis of urine, and inductively coupled plasma‐mass spectroscopy (ICP‐MS) analysis. Taken together, HA–SiNP conjugates may be developed as a promising liver targeted photoacoustic imaging contrast agent and liver‐targeted drug delivery agent.  相似文献   
87.
The cell‐specific targeting drug delivery and controlled release of drug at the cancer cells are still the main challenges for anti‐breast cancer metastasis therapy. Herein, the authors first report a biomimetic drug delivery system composed of doxorubicin (DOX)‐loaded gold nanocages (AuNs) as the inner cores and 4T1 cancer cell membranes (CMVs) as the outer shells (coated surface of DOX‐incorporated AuNs (CDAuNs)). The CDAuNs, perfectly utilizing the natural cancer cell membranes with the homotypic targeting and hyperthermia‐responsive ability to cap the DAuNs with the photothermal property, can realize the selective targeting of the homotypic tumor cells, hyperthermia‐triggered drug release under the near‐infrared laser irradiation, and the combination of chemo/photothermal therapy. The CDAuNs exhibit a stimuli‐release of DOX under the hyperthermia and a high cell‐specific targeting of the 4T1 cells in vitro. Moreover, the excellent combinational therapy with about 98.9% and 98.5% inhibiting rates of the tumor volume and metastatic nodules is observed in the 4T1 orthotopic mammary tumor models. As a result, CDAuNs can be a promising nanodelivery system for the future therapy of breast cancer.  相似文献   
88.
In this paper, a plasma membrane engineering approach is reported for tumor targeting drug delivery and contact‐cell‐enhanced photodynamic therapy (“CONCEPT”) by anchoring functionalized conjugates to cell vehicles. The membrane anchoring conjugates are comprised of a positively charged tetra‐arginine peptide sequence, a palmitic‐acid‐based membrane insertion moiety, and a lysine linker whose ε‐amine is modified with camptothecin (CPT), protoporphyrin IX (PpIX), or fluorescein (FAM). The amphipathic CPT, PpIX, or FAM conjugates (short as aCPT, aPpIX, or aFAM, respectively) can easily and steadily anchor or coanchor on the cell membrane of RAW264.7 cells (short as RCs), red blood cells, or mesenchymal stem cells. After anchoring aPpIX in RC cells, the tumor targeting ability and therapeutic effect of aPpIX‐anchored RC cells (short as aPRCs) is demonstrated in vitro and in vivo. Importantly, aPRCs exhibit the “CONCEPT” effect, which can enhance the therapeutic efficacy and reduce side effects at the single cell level. Due to the good tumor‐targeting ability, aPRCs can efficiently inhibit the tumor growth with no systemic toxicity after photoirradiation by photodynamic therapy.  相似文献   
89.
90.
本文采用活性亚结构拼接原理,设计并合成了15个新型含哌啶的查尔酮类衍生物,利用1H NMR、13C NMR和HR-MS对结构进行表征,并初步评价了其抗宫颈癌和抗顺铂耐药宫颈癌活性作用。结果表明,化合物6g具有一定的抗肿瘤活性和逆转顺铂耐药作用;并采用Elisa法、联合顺铂用药、Western Blot和分子对接对化合物6g与VEGFR-2和P-gp靶点进行了初步的研究。本研究为基于VEGFR-2和P-gp双靶点新型分子靶向查尔酮类衍生物的设计提供了一条思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号