首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   3篇
  国内免费   23篇
化学   125篇
力学   76篇
数学   11篇
物理学   82篇
无线电   9篇
  2023年   9篇
  2022年   7篇
  2021年   14篇
  2020年   17篇
  2019年   16篇
  2018年   8篇
  2017年   12篇
  2016年   15篇
  2015年   7篇
  2014年   11篇
  2013年   23篇
  2012年   12篇
  2011年   27篇
  2010年   14篇
  2009年   21篇
  2008年   10篇
  2007年   22篇
  2006年   8篇
  2005年   8篇
  2004年   8篇
  2003年   11篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有303条查询结果,搜索用时 781 毫秒
261.
Coalescence of sessile droplets is studied experimentally with water–glycerin mixtures of different viscosities. Effects of viscosity on the dimensionless spreading length (Ψ) and the center-to-center distance (L) are investigated for two droplets; the first droplet (Ds) is stationary on a substrate and the second droplet (D0) landing at a center-to-center distance L from the first droplet. For a low viscosity fluid, Ψ is maximum when L approaches zero (or λ  1, where λ = 1  L/Ds), which represents a head-on collision. For a high viscosity fluid, Ψ is minimum when λ  0.6. The effect of λ on line printing for various viscosities is also examined by printing multiple droplets. We found that the larger the viscosity, the less the breakup between droplets; viscosities smaller than 60 wt% glycerin yielded line breakup. The overlap ratio of λ > 0.3 produced not a line, but a bigger droplet or puddle because of coalescence. Data obtained in this work can provide insights for the fabrication of conductive microtracks or microinterconnects in printed-electronics applications where a line breakup between droplets would lead to an electrical circuit short.  相似文献   
262.
The impact dynamics of water droplets on an artificial dual-scaled superhydrophobic surface was studied and compared with that of a lotus leaf with impact velocity V up to 3 m/s. The lower critical impact velocity for the bouncing of droplets was about 0.08 m/s on both surfaces. At relatively low impact velocities, regular rebound of droplets and air bubble trapping and flow jetting on both surfaces were observed as V was increased. For intermediate V, partial pinning and rebound of droplets were found on the artificial dual-scaled surface due to the penetration of the droplets into the micro- and nano-scale roughness. On the lotus leaf, however, the droplets bounced off with intensive vibrations instead of being partially pinned on the surface because of the irregular distribution of microbumps on the leaf. As the impact velocity was sufficiently high, droplet splashing occurred on both surfaces. The contact time and restitution coefficient of the impinging droplets were also measured and discussed.  相似文献   
263.
264.
This article puts forward the quadrature method of moments (QMoM) for modeling droplet composition during the spray vaporization process. This method is implemented for solving the Continuous Thermodynamic Model (CTM) of multi-component droplet vaporization, an advantageous alternative to the classical Discrete Component Model (DCM) when the droplet is formed of a great number of components. The CTM approach consists in modeling the droplet’s composition using a probability density function (PDF). This method was first tried out for vaporizing droplets by Hallett, who assumed a Gamma-function for the PDF. However, Harstadt et al. underlined some problems in the case of vapor condensation on the droplet surface, since the Gamma-PDF model presumes the PDF’s mathematical form. The QMoM which does not require this hypothesis is studied in this article, according to Lage’s research dealing with QMoM application to phase equilibria. The numerical features of QMoM are investigated in detail, and then the method is implemented for the difficult test case of vapor condensation. The results are analyzed to illustrate the application of QMoM to multi-component droplet vaporization modeling and to provide a better understanding of the QMoM main advantages and limitations.  相似文献   
265.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   
266.
To prepare uniform polystyrene particles with ten microns of diameter, a parallel scaling-up strategy for the capillary-assembled stepwise microchannel was developed, which created uniform droplets with high-throughput and formed a large amount of emulsion templates for the polymerization of styrene and cross-linker. The microchannel droplet generator was robust for the flow rate deviation of the continuous phase in the jetting flow, and droplet generation frequency up to 2.8 × 104 Hz was achieved with only four parallel droplet generators, which were much more efficient than the parallelly scaled microfluidic devices working in dripping flow. 32–52 μm average diameter droplets with 4.5%–8.4% diameter variation coefficients were successfully prepared from the microchannel device fabricated by low-cost 3D-print method, and the droplets were subsequently turned to solid particles via a two-step polymerization in the platform. The polystyrene particles were further reduced to 16.9–23.5 μm with 5.0%–8.6% diameter variation coefficients due to the accompanying emulsion polymerization, and the working capacity of the platform reached hundred milligrams of particles per hour.  相似文献   
267.
A simple entrainment model is used to estimate droplet streamlines, velocity and mass flux in rocket exhaust plumes. Since droplet mass flux constitutes only about 1% of the exhaust mass flux, the effect of droplet entrainment on the gas flow is neglected. The novelty of the present model is in obtaining the droplet distribution within the nozzle by assuming a small radial random velocity component for droplets at the throat. Gas flow in the nozzle is approximated as isentropic plus a correction for the boundary layer. The computed distribution of droplet mass flux is found to be in good agreement with experimental data. Received 15 January 1996 / Accepted 11 September 1996  相似文献   
268.
Directly Suspended Droplet Microextraction (DSDME) was used for the determination of two tricyclic antidepressant drugs (TCAs), amitriptyline and nortriptyline. In this technique, an aqueous sample is agitated with a stirring bar, creating a mild vortex at the center of the vial. A droplet of an immiscible organic solvent is placed at the bottom of the vortex. After 20 min a portion of the organic droplet is withdrawn with a syringe and injected into the GC. Experimental conditions, such as the extraction solvent, extraction time, solvent volume, stirring rate, pH and salt addition were optimized. In order to evaluate the practical application of the method, relative standard deviations, linearity range and limits of detection were calculated. Typical enrichment factors were 167 and 179 for amitriptyline and nortriptyline, respectively. The method was applied to the determination of these drugs in urine samples.  相似文献   
269.
Point-of-need (PON) diagnostics offer promising methods to gather information relevant to health and safety on-site without the requirement for a fully equipped laboratory. In this review, we discuss how liquid-infused surfaces offer a promising platform to expand the capabilities of PON devices in the areas of biological sample preparation and system integration, providing new methods of controlling the movement of droplets and facilitating detection of biological and chemical compounds contained therein. Modifications to the underlying surface structure can be used to passively control the direction of droplet movement, and the careful selection of responsive solid substrates and/or overlying liquids can allow active control through induced temperature gradients, electrical stimulation, and exposure to magnetic fields. Recent work leveraging other advantages of liquid-infused systems such as ultra-low friction, noncoalescence of droplets, and liquid–liquid patterning has demonstrated the unique ways in which this approach can be used to both enhance current detection methods as well as enable new ones. Together, these recent developments in the manipulation of droplets on liquid-infused surfaces point to their significant potential for furthering the capacity of PON devices for both biological and environmental samples.  相似文献   
270.
This work presents a numerical simulation of the fluid dynamics of a liquid droplet during impact/absorption onto a porous medium. The main focus of this paper is on a parametric study of the influence of the governing parameters upon the fluid flow characteristics. The problem is described in a non-dimensional form, and the influence of the main governing parameters is investigated, including their variation along the range of physical configurations of interest. This procedure revealed 7 main governing parameters: Reynolds number (Re), Darcy number (Da), porosity (ε), Froude number (Fr), Weber number (We), contact angle (θ) and the ratio between pore and particle diameter size in the porous substrate (α). The results indicate that the values of Da and Re are more related to the amount of momentum dissipation due to the drag of the solid matrix of the substrate, while the values of We, α and θ can be mainly related to capillary pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号