首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   3篇
  国内免费   23篇
化学   125篇
力学   76篇
数学   11篇
物理学   82篇
无线电   9篇
  2023年   9篇
  2022年   7篇
  2021年   14篇
  2020年   17篇
  2019年   16篇
  2018年   8篇
  2017年   12篇
  2016年   15篇
  2015年   7篇
  2014年   11篇
  2013年   23篇
  2012年   12篇
  2011年   27篇
  2010年   14篇
  2009年   21篇
  2008年   10篇
  2007年   22篇
  2006年   8篇
  2005年   8篇
  2004年   8篇
  2003年   11篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有303条查询结果,搜索用时 0 毫秒
221.
We perform numerical simulations of two-phase liquid–gas sheared layers, with the objective of studying atomization. The Navier–Stokes equations for two-dimensional incompressible flow are solved in a periodic domain. A volume-of-fluid method is used to track the interface. The density ratio is kept around 10. The calculations show good agreement with a fully viscous Orr–Sommerfeld linear theory over several orders of magnitude of interface growth. The nonlinear development shows the growth of finger-like structures, or ligaments, and the detachment of droplets. The effect of the Weber and Reynolds numbers, the boundary layer width and the initial perturbation amplitude are discussed through a number of typical cases. Inversion of the liquid boundary layer is shown to yield more readily ligaments bending upwards and is thus more likely to produce droplets.  相似文献   
222.
The ability to accurately predict droplet entrainment in annular two-phase flow is required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. Most annular flow entrainment models in the open literature are formulated in terms of dimensionless groups, which do not directly account for interfacial instabilities. However, many researchers agree that there is a clear presence of interfacial instability phenomena having a direct impact on droplet entrainment. The present study proposes a model for droplet entrainment, based on the underlying physics of droplet entrainment from upward co-current annular film flow that is characteristic to light water reactor safety analysis. The model is developed based on a force balance and stability analysis that can be implemented into a transient three-field (continuous liquid, droplet, and vapor) two-phase heat transfer and fluid flow systems analysis computer code.  相似文献   
223.
Electrophoresis (EP) of droplets is an intriguing phenomenon that has applications in biological systems, separation strategies, and reactor engineering. Droplet EP is significantly different from the classic particle EP because of droplet characteristics such as a mobile surface charge and the nonrigidity of the interface. Also, the liquid–liquid system, where there is an interplay between the hydrodynamic and electrokinetic forces in both phases, adds to the complexity of electrophoretic motion. Due to the vast amount of potential applications of droplet EP, a mechanistic understanding of the droplet motion in the presence of an external electric field is crucial. This review provides a background on the mechanism of droplet EP and summarizes the intrinsic interplay between the different relevant forces in these systems. The review also describes the key differences between droplet EP and particle EP, and the impact of these differences on droplet mobility. Additionally, we schematically summarize the effects of key parameters on droplet EP mobility, such as electric double layer polarization, the development of internal flow inside a droplet and boundary effects.  相似文献   
224.
自然界中有很多超疏水植物叶片, 水滴撞击在这些表面时极易产生溅射和反弹, 造成农用化学品喷雾施药时药物的大量损失, 利用率低下, 从而重复喷洒施药. 农用化学品过度使用将造成食品安全、 农药残留、 水资源浪费及环境生态污染等问题. 因此, 增加水滴在超疏水植物叶片表面的沉积效率对提高农药利用率尤为重要. 本文从分析水滴在超疏水表面的撞击动力学特征开始, 结合添加助剂后液滴的物理化学性质, 系统阐述了水滴在超疏水植物叶片上的沉积方法和机理, 并提出筛选助剂和研究机理不仅要考虑助剂性质还要结合基底结构、 撞击动力学特征等因素, 而且还要考虑单水滴尺寸大小、 基底运动和弹性及环境因素等对沉积的影响. 本文对农药喷洒及生物医学、 机械工程、 涂料喷涂和油墨打印等领域均有指导意义和应用价值.  相似文献   
225.
A notable universal relationship has been proposed in the literature for the evolution of dimensionless droplet height and wetting diameter during the initial spreading stage of droplet impingement. In this study, this universal relationship was investigated by employing three sets of measurements. Sequential images were recorded, and the whole droplet profile ensembles were plotted to facilitate this study. These sets of experiments were designed by changing impact velocity, surface hydrophobicity, or solution property. The experimental results illustrate that the importance of parameters causing the data variation is in the order of surface hydrophobicity > initial impact velocity > surfactant on wetting diameter, and surface hydrophobicity ≈ initial impact velocity > surfactant on droplet height. No universal relationship was observed for dimensionless droplet height and wetting diameter.  相似文献   
226.
A newly designed eccentric cylinder device has been used to study the deformation and orientation of single Newtonian droplets immersed in an immiscible Newtonian liquid in a controlled complex flow field. Optical microscopy coupled with image acquisition analysis allows monitoring the dynamics of droplets flowing in the gap between the eccentric cylinders. Throughout the experiments, the flow intensity was kept below the critical conditions for droplet break-up. The experimental results are compared with predictions which are obtained using the transient form of the phenomenological model of Maffettone and Minale (J Non-Newtonian Fluid Mech 78:227–241, 1998; J Non-Newtonian Fluid Mech 84:105–106, 1999), incorporating a flow type parameter that accounts for the relative amount of elongational effects in the flow field and adapting the capillary number to mixed flows. For all the sub-critical flows studied here, good agreement was found between model predictions and experimental data, providing, for the first time, a quantitative assessment of drop shape predictions in complex flows.  相似文献   
227.
The cooling behavior of the impingement of a droplet train, and free surface jets over a heated and pre-wetted surface is explored employing an Algebraic Volume-of-Fluid methodology. The code is based on a modified version of the two-phase numerical solver interFoam (OpenFOAM) (Trujillo and Lewis, 2012). Two versions of the free surface jet are studied. The first consists of a fully-developed profile exiting the nozzle, and the second is characterized by a uniform velocity distribution. Results show that both jet configurations have higher cooling performance than the droplet train locally and globally, with the fully-developed case being the most effective of the two jet arrangements. Locally, the performance is measured by radial profiles of the boundary-layer-displacement thickness and heat transfer coefficient. Globally, the cooling effectiveness is directly proportional to the surface area that resides within the high-convection region, i.e. before the boundary layer separation point. On a temporal basis, the liquid film within the impingement region of the droplet train exhibits pronounced variations in velocity magnitude and film thickness. This is directly attributed to the nature of continuous droplet impacts affecting the impingement region, and gives rise to an unsteady cooling and heating of the fluid near the wall. In contrast for the jets, the film and the corresponding free surface are nearly steady with only minor perturbations.  相似文献   
228.
A numerical procedure for the prediction of fogging and defogging phenomena is presented. The simulation involves the solution of an air flow field along a cold solid surface, the evaluation of the unsteady conduction through the solid itself, and a model for the heat and mass transfer within the thin water layer on the fogged surface. A suite of routines for the unsteady simulation of the water layer evolution is coupled with an equal order finite element Navier Stokes solver and a finite volume conduction code. The procedure is fully independent of the numerical details of the solid and fluid domain solvers. Two different coupling approaches may be followed: A loose one, where the Navier Stokes solution is used only for a steady state estimate of the heat transfer coefficient, or a close one, where the Navier Stokes, conduction and water layer codes are iterated simultaneously. The latter is required for the problem of natural convection, where temperature (and thus the energy balance of the water layer) and flow field are coupled. The water layer is modelled as a collection of closely packed tiny droplets, leaving a portion of dry area among them. The effect of the contact angle is taken into account, and physical assumptions allow to define the local ratio between wet and dry surface for both the fogging and defogging process. As a case study, a comparison with experimental data for a complete fogging and defogging cycle of a glass lens in natural convection is presented.  相似文献   
229.
The process of rapid phase transition from highly superheated liquid to vapor is frequently so fast and violent that it is called explosive boiling. The paper uses the kinetic theory of evaporation to study growth of an internal vapor bubble produced by homogeneous nucleation within a highly superheated liquid droplet boiling explosively in a hot medium. Evaporation/condensation coefficient is estimated by comparing the predictions of the theory with available experimental data. We show that the value of the evaporation coefficient can be very low for high reduced temperatures (0.06 for butane at 378 K), in agreement with recent molecular dynamic simulations.  相似文献   
230.
Experimental problems preclude or limit measurements of interfacial tension in bitumen or extra-heavy crude oil-containing systems when there exists a vanishing density difference between the phases. We describe a novel droplet pressure method that allows such measurements to be made. This method is based on a liquid/liquid adaptation of the capillary displacement differential maximum bubble pressure surface tension method of Schramm and Green [29]. In this method, interfacial tension is calculated from the difference between maximum droplet pressures reached at capillaries of differing internal radii, immersed to slightly different depths. The elimination of the influence of liquid densities allows the measurement of interfacial tensions without independently determining the liquid densities, and in particular, permits measurements in systems for which the density difference is vanishingly small. The absolute measuring technique is illustrated for several systems of pure and practical liquids. Received: 8 March 2000/Accepted: 30 May 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号