首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   4篇
化学   43篇
物理学   14篇
无线电   44篇
  2024年   2篇
  2023年   38篇
  2022年   5篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   10篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1977年   1篇
排序方式: 共有101条查询结果,搜索用时 10 毫秒
41.
Multiple-resonance thermally activated delayed fluorescence (MR-TADF) materials are highly coveted for their high efficiency and narrowband emission in organic light-emitting diodes (OLEDs). Nevertheless, the development of near-infrared (NIR) MR-TADF emitters remains a formidable challenge. In this study, we design two new NIR MR-TADF emitters, PXZ−R−BN and BCz−R−BN, by embedding 10H-phenoxazine (PXZ) and 7H-dibenzo[c,g]carbazole (BCz) fragments to increase the electron-donating ability or extending π-conjugation on the framework of para-boron fusing polycyclic aromatic hydrocarbons (PAHs). Both compounds emit in the NIR region, with a full-width at half-maximum (FWHM) of 49 nm (0.13 eV) for PXZ−R−BN and 43 nm (0.11 eV) for BCz−R−BN in toluene. To sensitize the two NIR MR-TADF emitters in OLEDs, a new platinum complex, Pt-1, is designed as a sensitizer. The PXZ−R−BN-based sensitized OLEDs achieve a maximum external quantum efficiency (EQEmax) of nearly 30 % with an emission band at 693 nm, and exceptional long operational stability with an LT97 (time to 97 % of the initial luminance) value of 39084 h at an initial radiance of 1000 mW sr−1 m−2. The BCz−R−BN-based OLEDs reach EQEmax values of 24.2 % with an emission band at 713 nm, which sets a record value for NIR OLEDs with emission bands beyond 700 nm.  相似文献   
42.
We report on a technique to determine in-operando transport properties of Organic Light Emitting Diodes (OLEDs). Two types of OLEDs that solely differ in the emission layer but obviously exhibit a different potential distribution are investigated in this study. If the emission layer consists of the isomer TH-A a large shift in onset voltage can be observed in case of layer thickness variation of the emission layer. In case of the isomer TH-B a thickness variation has no impact on the onset voltage. Therefore the voltage developments per layer are determined with the help of IV measurements on a set of devices with varying layer thickness. From an empirical point of view the voltage behaviour in each layer follows a simple power law. A drift-diffusion model is developed that well describes the current density dependent evolution of coefficient and exponent of the power law. From the model we are able to derive the carrier injection mechanism into the respective layer as well as the injection barrier height. Also the carrier mobility is determined. Finally we are able to show that the existence of a large injection barrier can not explain the observed onset voltage shifts in case of TH-A. Instead an electric field at or close to the interface is necessary to describe the TH-A behaviour.  相似文献   
43.
Electroluminescent (EL) clusters emerged rapidly, owing to their organic–inorganic hybrid character useful for comprehensive performance integration and the potential for large-scale display and lighting applications. However, despite their good photoluminescent (PL) properties, until present, no efficient EL monodentate ligand-based clusters were reported due to structural variation during processing and excitation and exciton confinement on cluster-centered quenching states. Here we demonstrate an effective bulky passivation strategy for efficient cluster light-emitting diodes with a monophosphine Cu4I4 cube named [TMeOPP]4Cu4I4. With terminal pyridine groups, an active matrix named TmPyPB supports an effective host-cluster interplay for configuration fixation, structural stabilization, and exciton-confinement optimization. Compared to common inactive hosts, the passivation effects of TmPyPB markedly reduce trap-state densities by 24–40 % to suppress nonradiative decay, resulting in state-of-the-art PL and EL quantum yields reaching 99 % and 15.6 %, respectively, which are significantly improved by about 7-fold. TmPyPB simultaneously increases EL luminance to 104 nits, which is ≈100-fold that of the non-doped analogue.  相似文献   
44.
Rationally tuning the emission position and narrowing the full width at half-maximum (FWHM) of an emitter is of great importance for many applications. By synergistically improving rigidity, strengthening the resonant strength, inhibiting molecular bending and rocking, and destabilizing the HOMO energy level, a deep-blue emitter (CZ2CO) with a peak wavelength of 440 nm and an ultranarrow spectral FWHM of 16 nm (0.10 eV) was developed via intramolecular cyclization in a carbonyl/N resonant core (QAO). The dominant υ0-0 transition character of CZ2CO gives a Commission Internationale de I’Éclairage coordinates (CIE) of (0.144, 0.042), nicely complying with the BT.2020 standard. Moreover, a hyper-fluorescent device based on CZ2CO shows a high maximum external quantum efficiency (EQEmax) of 25.6 % and maintains an EQE of 22.4 % at a practical brightness of 1000 cd m−2.  相似文献   
45.
Developing deep-blue thermally activated delayed fluorescence (TADF) emitters with both high efficiency and color purity remains a formidable challenge. Here, we proposed a design strategy by integrating asymmetric oxygen-boron-nitrogen (O−B−N) multi-resonance (MR) unit into traditional N−B−N MR molecules to form a rigid and extended O−B−N−B−N MR π-skeleton. Three deep-blue MR-TADF emitters of OBN , NBN and ODBN featuring asymmetric O−B−N, symmetric N−B−N and extended O−B−N−B−N MR units were synthesized through the regioselective one-shot electrophilic C−H borylation at different positions of the same precursor. The proof-of-concept emitter ODBN exhibited respectable deep-blue emission with Commission International de l′Eclairage coordinate of (0.16, 0.03), high photoluminescence quantum yield of 93 % and narrow full width at half maximum of 26 nm in toluene. Impressively, the simple trilayer OLED employing ODBN as emitter achieved a high external quantum efficiency up to 24.15 % accompanied by a deep blue emission with the corresponding CIE y coordinate below 0.1.  相似文献   
46.
This letter reports a new current versus voltage model for light-emitting devices with a quantum well where electrons and holes are injected and recombine. The current is entirely caused by the recombination of electrons and holes. Historically, the equation used for light-emitting diodes (LEDs) and laser diodes (LDs) has been the renowned Sah-Noyce-Shockley (SNS) diode equation. In this equation at typical forward bias condition, most of the current is caused by the diffusion of carriers over the depletion region. It is clear that this condition is different from what actually happen in LEDs and LDs. We thus looked into the fundamental of carrier transport and developed a new model for devices with a quantum well. Based on the new model, calculated I-V curves agree well with measurement results of GaN/sapphire LEDs with GaInN quantum wells. In calculation, junction temperature Tj rather than case temperature Tc is used to achieve better agreement.  相似文献   
47.
Two kinds of triphenylamine-derived solid-state emissive carbon dots (CDs) with orange and yellow color are facilely synthesized through solvothermal treatment, taking advantage of the nonplanar structure and good carrier mobility of triphenylamine unit. Theoretical calculations show that the triphenylamine structure could greatly inhibit the direct π–π stacking of aromatic skeletons and enhance the fluorescence properties of CDs in aggregation state. By adopting the CDs as single emissive layer, high-performance orange-color and green-color electroluminescent light-emitting diodes (LEDs) are successfully fabricated, with maximum brightness of 9450/4236 cd m−2, high current efficiency of 1.57/2.34 cd A−1 and low turn-on voltage of 3.1/3.6 eV are respectively achieved. Significantly, white-color LED device is further prepared. This work provides a universal platform for the construction of novel solid-state emissive CDs with significant applications in photoelectric device.  相似文献   
48.
49.
Achieving efficient blue electroluminescence (EL) remains the fundamental challenge that impedes perovskite light-emitting diodes (PeLEDs) towards commercial applications. The bottleneck accounting for the inefficient blue PeLEDs is broadly attributed to the poor-emissive blue perovskite emitters based on either mixed halide engineering or reduced-dimensional strategy. Herein, we report the high-performing sky-blue PeLEDs (490 nm) with the maximum EQE exceeding 15 % by incorporating a molecular modifier, namely 4,4′-Difluorophenone, for significantly suppressing the non-radiative recombination and tuning of the low-dimensional phase distribution of quasi-2D blue perovskites, which represents a remarkable paradigm for developing the new generation of blue lighting sources.  相似文献   
50.
The synthesis and properties of organophosphorus π-conjugated chromophores incorporating metallic ions are described. Their optical and electrochemical properties depend on the metal centre linked to the organophosphorus atom. Moreover, the introduction of metallic ions induces a control of the supramolecular organization of the organophosphorus π-conjugated systems. The specific properties of these complexes make them valuable materials for organic light-emitting diodes and interesting building blocks for the tailoring of novel NLO-phores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号