首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1117篇
  免费   437篇
  国内免费   25篇
化学   217篇
晶体学   4篇
力学   53篇
综合类   1篇
数学   34篇
物理学   367篇
无线电   903篇
  2025年   57篇
  2024年   146篇
  2023年   171篇
  2022年   177篇
  2021年   174篇
  2020年   121篇
  2019年   73篇
  2018年   34篇
  2017年   48篇
  2016年   46篇
  2015年   33篇
  2014年   38篇
  2013年   33篇
  2012年   32篇
  2011年   40篇
  2010年   25篇
  2009年   24篇
  2008年   24篇
  2007年   25篇
  2006年   25篇
  2005年   20篇
  2004年   19篇
  2003年   23篇
  2002年   13篇
  2001年   13篇
  2000年   23篇
  1999年   15篇
  1998年   9篇
  1997年   14篇
  1996年   10篇
  1995年   9篇
  1994年   12篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   6篇
  1989年   9篇
  1988年   7篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有1579条查询结果,搜索用时 0 毫秒
91.
    
We propose a general deep variational model (reduced version, full version as well as the extension) via a comprehensive fusion approach in this paper. It is able to realize various image tasks in a completely unsupervised way without learning from samples. Technically, it can properly incorporate the CNN based deep image prior (DIP) architecture into the classic variational image processing models. The minimization problem solving strategy is transformed from iteratively minimizing the sub-problem for each variable to automatically minimizing the loss function by learning the generator network parameters. The proposed deep variational (DV) model contributes to the high order image edition and applications such as image restoration, inpainting, decomposition and texture segmentation. Experiments conducted have demonstrated significant advantages of the proposed deep variational model in comparison with several powerful techniques including variational methods and deep learning approaches.  相似文献   
92.
    
Learning-based shadow detection methods have achieved an impressive performance, while these works still struggle on complex scenes, especially ambiguous soft shadows. To tackle this issue, this work proposes an efficient shadow detection network (ESDNet) and then applies uncertainty analysis and graph convolutional networks for detection refinement. Specifically, we first aggregate global information from high-level features and harvest shadow details in low-level features for obtaining an initial prediction. Secondly, we analyze the uncertainty of our ESDNet for an input shadow image and then take its intensity, expectation, and entropy into account to formulate a semi-supervised graph learning problem. Finally, we solve this problem by training a graph convolution network to obtain the refined detection result for every training image. To evaluate our method, we conduct extensive experiments on several benchmark datasets, i.e., SBU, UCF, ISTD, and even on soft shadow scenes. Experimental results demonstrate that our strategy can improve shadow detection performance by suppressing the uncertainties of false positive and false negative regions, achieving state-of-the-art results.  相似文献   
93.
    
In this paper, we strive to propose a self-interpretable framework, termed PrimitiveTree, that incorporates deep visual primitives condensed from deep features with a conventional decision tree, bridging the gap between deep features extracted from deep neural networks (DNNs) and trees’ transparent decision-making processes. Specifically, we utilize a codebook, which embeds the continuous deep features into a finite discrete space (deep visual primitives) to distill the most common semantic information. The decision tree adopts the spatial location information and the mapped primitives to present the decision-making process of the deep features in a tree hierarchy. Moreover, the trained interpretable PrimitiveTree can inversely explain the constituents of the deep features, highlighting the most critical and semantic-rich image patches attributing to the final predictions of the given DNN. Extensive experiments and visualization results validate the effectiveness and interpretability of our method.  相似文献   
94.
In the present era of machines and edge-cutting technologies, still document frauds persist. They are done intuitively by using almost identical inks, that it becomes challenging to detect them—this demands an approach that efficiently investigates the document and leaves it intact. Hyperspectral imaging is one such a type of approach that captures the images from hundreds to thousands of spectral bands and analyzes the images through their spectral and spatial features, which is not possible by conventional imaging. Deep learning is an edge-cutting technology known for solving critical problems in various domains. Utilizing supervised learning imposes constraints on its usage in real scenarios, as the inks used in forgery are not known prior. Therefore, it is beneficial to use unsupervised learning. An unsupervised feature extraction through a Convolutional Autoencoder (CAE) followed by Logistic Regression (LR) for classification is proposed (CAE-LR). Feature extraction is evolved around spectral bands, spatial patches, and spectral-spatial patches. We inspected the impact of spectral, spatial, and spectral-spatial features by mixing inks in equal and unequal proportion using CAE-LR on the UWA writing ink hyperspectral images dataset for blue and black inks. Hyperspectral images are captured at multiple correlated spectral bands, resulting in information redundancy handled by restoring certain principal components. The proposed approach is compared with eight state-of-art approaches used by the researchers. The results depicted that by using the combination of spectral and spatial patches, the classification accuracy enhanced by 4.85% for black inks and 0.13% for blue inks compared to state-of-art results. In the present scenario, the primary area concern is to identify and detect the almost similar inks used in document forgery, are efficiently managed by the proposed approach.  相似文献   
95.
    
Deep neural network models with strong feature extraction capacity are prone to overfitting and fail to adapt quickly to new tasks with few samples. Gradient-based meta-learning approaches can minimize overfitting and adapt to new tasks fast, but they frequently use shallow neural networks with limited feature extraction capacity. We present a simple and effective approach called Meta-Transfer-Adjustment learning (MTA) in this paper, which enables deep neural networks with powerful feature extraction capabilities to be applied to few-shot scenarios while avoiding overfitting and gaining the capacity for quickly adapting to new tasks via training on numerous tasks. Our presented approach is classified into two major parts, the Feature Adjustment (FA) module, and the Task Adjustment (TA) module. The feature adjustment module (FA) helps the model to make better use of the deep network to improve feature extraction, while the task adjustment module (TA) is utilized for further improve the model’s fast response and generalization capabilities. The proposed model delivers good classification results on the benchmark small sample datasets MiniImageNet and Fewshot-CIFAR100, as proved experimentally.  相似文献   
96.
    
《Tetrahedron》2019,75(34):130456
A mild and efficient protocol for the selective construction of Z-3-thiocyanatoacrylates is described. Various alkynoates reacted with KSCN and H2O by using cheap and recyclable deep eutectic solvent as the catalyst and reaction media to produce the corresponding products in excellent yields with mild reaction conditions and wide substrate scope.  相似文献   
97.
98.
    
Protein function prediction is a crucial task in the post-genomics era due to their diverse irreplaceable roles in a biological system. Traditional methods involved cost-intensive and time-consuming molecular biology techniques but they proved to be ineffective after the outburst of sequencing data through the advent of cost-effective and advanced sequencing techniques. To manage the pace of annotation with that of data generation, there is a shift to computational approaches which are based on homology, sequence and structure-based features, protein-protein interaction networks, phylogenetic profiles, and physicochemical properties, etc. A combination of these features has proven to be promising for protein function prediction in terms of improving prediction accuracy. In the present work, we have employed a combination of features based on sequence, physicochemical property, subsequence and annotation features with a total of 9890 features extracted and/or calculated for 171,212 reviewed prokaryotic proteins of 9 bacterial phyla from UniProtKB, to train a supervised deep learning ensemble model with the aim to categorize a bacterial hypothetical/unreviewed protein’s function into 1739 GO terms as functional classes. The proposed system being fully dedicated to bacterial organisms is a novel attempt amongst various existing machine learning based protein function prediction systems based on mixed organisms. Experimental results demonstrate the success of the proposed deep learning ensemble model based on deep neural network method with F1 measure of 0.7912 on the prepared Test dataset 1 of reviewed proteins.  相似文献   
99.
    
Automatic image annotation is one of the most important challenges in computer vision, which is critical to many real-world researches and applications. In this paper, we focus on the issue of large scale image annotation with deep learning. Firstly, considering the existing image data, especially the network images, most of the labels of themselves are inaccurate or imprecise. We propose a Multitask Voting (MV) method, which can improve the accuracy of original annotation to a certain extent, thereby enhancing the training effect of the model. Secondly, the MV method can also achieve the adaptive label, whereas most existing methods pre-specify the number of tags to be selected. Additionally, based on convolutional neural network, a large scale image annotation model MVAIACNN is constructed. Finally, we evaluate the performance with experiments on the MIRFlickr25K and NUS-WIDE datasets, and compare with other methods, demonstrating the effectiveness of the MVAIACNN.  相似文献   
100.
    
In this paper, an artificial stereo extension method that creates stereophonic sound from a mono sound source is proposed. The proposed method first trains deep neural networks (DNNs) that model the nonlinear relationship between the dominant and residual signals of the stereo channel. In the training stage, the band‐wise log spectral magnitude and unwrapped phase of both the dominant and residual signals are utilized to model the nonlinearities of each sub‐band through deep architecture. From that point, stereo extension is conducted by estimating the residual signal that corresponds to the input mono channel signal with the trained DNN model in a sub‐band domain. The performance of the proposed method was evaluated using a log spectral distortion (LSD) measure and multiple stimuli with a hidden reference and anchor (MUSHRA) test. The results showed that the proposed method provided a lower LSD and higher MUSHRA score than conventional methods that use hidden Markov models and DNN with full‐band processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号