首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2675篇
  免费   555篇
  国内免费   251篇
化学   837篇
晶体学   26篇
力学   92篇
综合类   12篇
数学   86篇
物理学   1478篇
无线电   950篇
  2024年   6篇
  2023年   27篇
  2022年   51篇
  2021年   82篇
  2020年   95篇
  2019年   76篇
  2018年   86篇
  2017年   124篇
  2016年   114篇
  2015年   149篇
  2014年   197篇
  2013年   245篇
  2012年   247篇
  2011年   211篇
  2010年   163篇
  2009年   167篇
  2008年   171篇
  2007年   183篇
  2006年   117篇
  2005年   105篇
  2004年   124篇
  2003年   91篇
  2002年   94篇
  2001年   92篇
  2000年   75篇
  1999年   57篇
  1998年   51篇
  1997年   55篇
  1996年   41篇
  1995年   30篇
  1994年   20篇
  1993年   29篇
  1992年   31篇
  1991年   17篇
  1990年   14篇
  1989年   13篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有3481条查询结果,搜索用时 100 毫秒
251.
In this paper, the universal deformation rings of certain modular representations of a finite group are determined. The representations under consideration are those which are associated to blocks with Klein four defect groups and whose stable endomorphisms are given by scalars. It turns out that these universal deformation rings are always subquotient rings of the group ring of a Klein four group over the ring of Witt vectors.

  相似文献   

252.
The nature of phosphonopeptides containing N-terminal l-phenylalanine (l-Phe), namely l-Phe-dl-NH-CH(CH(CH3)2)-PO3H2 (A), l-Phe-l-NH-CH(CH3)-PO3H2 (B), and l-Phe-dl-NH-CH(CH2CH2COOH)-PO3H2 (C) (Fig. 1 presents molecular structure of these molecules), adsorbed on electrochemically roughened and colloidal silver surfaces has been explored by surface-enhanced Raman spectroscopy (SERS). To reveal adsorption mechanism of these species on the basis of their SERS spectra at first Fourier-transform Raman (FT-RS) and absorption infrared (FT-IR) spectra of non-adsorbed molecules were measured. Examination of enhancement, frequency shifts, and changes in relative intensities of SERS bands due to adsorption and surface roughens variation reveals that the tilted compounds adsorb on the electrochemically roughened silver substrate in similar way, while they behave differently on the colloidal silver surface. A stronger enhancement of in-plane ring vibrations of the l-Phe ring, i.e., ν3 and ν18b (B2), over these of the A2 symmetry in all SERS spectra on the electrochemically roughened silver substrate suggests that the ring interacts with this surface adopting slightly deflect orientation from the perpendicular one. Also, enhancement of PO and -CH2-/-CH3 fragments vibrations points out that they are involved in adsorption process on this substrate. This conclusion was drawn on the basis of the enhancement of 1274-1279 and 1138-1152 (ν(PO)), 1393-1400 (δ(CH) + ρb(CNH2) + ν(C-CO) + δ(CH3)), ∼1455 (δ(CCH3/CCH2) + ρb(CH3/CH2), and 1505-1512 cm−1 (δ(CH2) + Phe(ν19a)) bands. Although a relative intensity ratio of these bands in the presented SERS spectra is different. On the other hand, on the colloidal silver nanoparticles, the aromatic ring of all molecules is lying flat or takes almost parallel orientation to this surface. Besides, A interacts also via P-terminal group (568, 765, 827, 1040, and 1150 cm−1), whereas B mainly through NH2-C-(CO)-CNH-(712 and 1255 cm−1). In the case of C, it adsorbs on the silver colloidal surface mainly through the aromatic ring of l-Phe, while other fragments of the molecule are in close proximity to this surface as comes off the weak enhancement of bands due to the aliphatic vibrations.  相似文献   
253.
Here we present SERS spectra of several l-phenylalanine (Phe) phosphonodipeptides, i.e., l-Phe-l-Ala-PO3H2 (MD1), l-Phe-l-Val-PO3H2 (MD2), l-Phe-β-Ala-CH(OH)-PO3H2 (MD3), l-Phe-l-Ala-CH(OH)-PO3H2 (MD4), l-Ala-(3,4-dimethoxy)-l-Phe-PO3H2 (MD5), and l-Ala-(3,4-dimethoxy)-(des-CH2)-l-Phe-PO3H2 (MD6), immobilized on electrochemically roughened silver electrodes. These spectra are analyzed by theoretical calculations using density functional theory (DFT) at the B3LYP level with 6-31++G∗∗ basis set. In addition, these spectra are compared with SERS spectra of these species adsorbed on a colloidal silver surface. We showed that on the macroscopic silver substrate, the Phe aromatic ring of MD3 and MD4 is oriented vertically, while for MD1 it almost “stands up” on this surface. In the other three cases, the Phe ring adopts a tilted orientation in regard to the substrate. We also find that the phosphonate , methyl/methane, or dimethoxy groups of MD1, MD2, MD3, MD5, and MD6 are involved in the interaction of these phosphonodipeptides with the electrochemically roughened surface. This phenomenon is clearly seen for -CH2-/-CH3/-OCH3 moieties as well as for the group that adsorbs on the macroscopic silver substrates mainly via the PO fragment. We also showed that MD4 binds to the macroscopic silver substrate through the hydroxyl, amine, and phosphonate groups, while the methylene/methane moieties are remote from this surface. We found that studied phosphonodipeptides often adsorb differently on the macroscopic silver substrate and on the colloidal silver nanoparticles. For example, MD1 adopts an almost vertical orientation on the electrochemically roughened silver substrate and is tilted or close to flat on the silver nanoparticles.  相似文献   
254.
Despite the increase in horizontal well applications, scaling fluid displacement in porous medium with horizontal wells is yet to be fully investigated. Determining the conditions under which horizontal wells may lead to better oil recovery is of great importance to the petroleum industry. In this paper, a numerical sensitivity study was performed for several well configurations. The study is performed in order to reveal the functional relationships between the scaling groups governing the displacement and the performance of immiscible displacements in homogeneous reservoirs produced by horizontal wells. These relationships can be used as a quick prediction tool for the fractional oil recovery for any combinations of the scaling groups, thus eliminating the need for the expensive fine-mesh simulations. In addition, they provide the condition under which a horizontal well configuration may yield better recovery performance. These results have potential applications in modeling immiscible displacements and in the scaling of laboratory displacements to field conditions.  相似文献   
255.
本文用解析法四边固支球面扁壳的在均布荷载作用下的内力和挠度进行了计算。  相似文献   
256.
利用离子束增强沉积技术,在将Ti用Ar^+束溅沉积到淬火态9Cr18Mo不锈轴承钢表面的同时,分别用Ar^+,N^+和C^+轰击试样表面,制取了增强沉积的表面改性层  相似文献   
257.
Hydrogen sulfide (H2S) has emerged as an important gasotransmitter in diverse physiological processes, although many aspects of its roles remain unclear, partly owing to a lack of robust analytical methods. Herein we report a novel surface‐enhanced Raman scattering (SERS) nanosensor, 4‐acetamidobenzenesulfonyl azide‐functionalized gold nanoparticles (AuNPs/4‐AA), for detecting the endogenous H2S in living cells. The detection is accomplished with SERS spectrum changes of AuNPs/4‐AA resulting from the reaction of H2S with 4‐AA on AuNPs. The SERS nanosensor exhibits high selectivity toward H2S. Furthermore, AuNPs/4‐AA responds to H2S within 1 min with a 0.1 μM level of sensitivity. In particular, our SERS method can be utilized to monitor the endogenous H2S generated in living glioma cells, demonstrating its great promise in studies of pathophysiological pathways involving H2S.  相似文献   
258.
In this study, the thermal denaturation mechanism and secondary structures of two types of human insulin nanoparticles produced by a process of solution‐enhanced dispersion by supercritical fluids using dimethyl sulfoxide (DMSO) and ethanol (EtOH) solutions of insulin are investigated using spectroscopic approaches and molecular dynamics calculations. First, the temperature‐dependent IR spectra of spherical and rod‐shaped insulin nanoparticles prepared from DMSO and EtOH solution, respectively, are analyzed using principal component analysis (PCA) and 2D correlation spectroscopy to obtain a deeper understanding of the molecular structures and thermal behavior of the two insulin particle shapes. All‐atom molecular dynamics (AAMD) calculations are performed to investigate the influence of the solvent molecules on the production of the insulin nanoparticles and to elucidate the geometric differences between the two types of nanoparticles. The results of the PCA, the 2D correlation spectroscopic analysis, and the AAMD calculations clearly reveal that the thermal denaturation mechanisms and the degrees of hydrogen bonding in the spherical and rod‐shaped insulin nanoparticles are different. The polarity of the solvent might not alter the structure or function of the insulin produced, but the solvent polarity does influence the synthesis of different shapes of insulin nanoparticles.  相似文献   
259.
We report surface‐enhanced Raman studies on intact plant material using onion layers as a biological target, and silver nanoaggregates and silver island films as enhancing plasmonic structures. Surface‐enhanced Raman scattering (SERS) enhancement allows the detection of strong Raman signatures of chemical constituents of the surface of the onion layer such as cellulose, proteins, and flavonols. Because of long‐time incubation, SERS sensors can access the extracellular space in the inner of the layer. The location of silver nanoparticles inside the onion layer has been monitored by the SERS images collected from chemicals present in the onion and/or reporter molecules attached to the nanoparticles. Our studies show a competitive adsorption of intrinsic bio molecules of the onion layer and reporter molecules. Different spectra from different places of the layer indicate the complex heterogeneous chemical structure of the plant material. The pH‐sensitive reporter molecule para mercapto benzoic acid attached to the nanoparticles allows us to infer pH values inside the extracellular matrix of the onion layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
260.
Interest in the synthesis of hybrid substrates for surface‐enhanced Raman scattering (SERS) has surged recently. Hereof, in the present work, a hybrid SERS substrate CuO : Mn/Ag heterojunction has been synthesised. To accomplish this, the nanostructred Ag island film and CuO : Mn nanoparticles are synthesised by vacuum thermal evaporation method and sol–gel method respectively, and thereafter, a heterojunction between the CuO : Mn and Ag is fabricated by adsorption of CuO : Mn (10‐3 m in ethanol) on Ag island film. Further, the SERS sensitivity of CuO : Mn/Ag heterojunctions has been studied by probing methyl orange. We observed that with Mn‐doping in the lattice of CuO, the SERS signal is enhanced considerably because of ferromagnetic ordering in CuO : Mn. DFT/B3LYP/6‐311 G(d, p) method is used to calculate the energy of HOMO and LUMO level of methyl orange. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号