首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2675篇
  免费   555篇
  国内免费   251篇
化学   837篇
晶体学   26篇
力学   92篇
综合类   12篇
数学   86篇
物理学   1478篇
无线电   950篇
  2024年   6篇
  2023年   27篇
  2022年   51篇
  2021年   82篇
  2020年   95篇
  2019年   76篇
  2018年   86篇
  2017年   124篇
  2016年   114篇
  2015年   149篇
  2014年   197篇
  2013年   245篇
  2012年   247篇
  2011年   211篇
  2010年   163篇
  2009年   167篇
  2008年   171篇
  2007年   183篇
  2006年   117篇
  2005年   105篇
  2004年   124篇
  2003年   91篇
  2002年   94篇
  2001年   92篇
  2000年   75篇
  1999年   57篇
  1998年   51篇
  1997年   55篇
  1996年   41篇
  1995年   30篇
  1994年   20篇
  1993年   29篇
  1992年   31篇
  1991年   17篇
  1990年   14篇
  1989年   13篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有3481条查询结果,搜索用时 5 毫秒
221.
We report surface‐enhanced Raman studies on intact plant material using onion layers as a biological target, and silver nanoaggregates and silver island films as enhancing plasmonic structures. Surface‐enhanced Raman scattering (SERS) enhancement allows the detection of strong Raman signatures of chemical constituents of the surface of the onion layer such as cellulose, proteins, and flavonols. Because of long‐time incubation, SERS sensors can access the extracellular space in the inner of the layer. The location of silver nanoparticles inside the onion layer has been monitored by the SERS images collected from chemicals present in the onion and/or reporter molecules attached to the nanoparticles. Our studies show a competitive adsorption of intrinsic bio molecules of the onion layer and reporter molecules. Different spectra from different places of the layer indicate the complex heterogeneous chemical structure of the plant material. The pH‐sensitive reporter molecule para mercapto benzoic acid attached to the nanoparticles allows us to infer pH values inside the extracellular matrix of the onion layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
222.
Interest in the synthesis of hybrid substrates for surface‐enhanced Raman scattering (SERS) has surged recently. Hereof, in the present work, a hybrid SERS substrate CuO : Mn/Ag heterojunction has been synthesised. To accomplish this, the nanostructred Ag island film and CuO : Mn nanoparticles are synthesised by vacuum thermal evaporation method and sol–gel method respectively, and thereafter, a heterojunction between the CuO : Mn and Ag is fabricated by adsorption of CuO : Mn (10‐3 m in ethanol) on Ag island film. Further, the SERS sensitivity of CuO : Mn/Ag heterojunctions has been studied by probing methyl orange. We observed that with Mn‐doping in the lattice of CuO, the SERS signal is enhanced considerably because of ferromagnetic ordering in CuO : Mn. DFT/B3LYP/6‐311 G(d, p) method is used to calculate the energy of HOMO and LUMO level of methyl orange. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
223.
Metal nanoparticle dimers with controllable gap distance have attracted considerable attention because of their promising application in plasmonics. Generally, gaps with nanometer or subnanometer dimensions generate localized surface plasmon resonance (LSPR) coupling effect, thus contributing to a strong electromagnetic field for improving surface enhanced Raman scattering (SERS) effect. Here, we developed a facile approach to fabricate Au@SiO2 dimers through the steric hindrance effect, in which the SiO2 shell functioned as a block and a rigid dithiol molecule was employed as linker. The thickness of the SiO2 shell played a critical role in improving the yield of dimers. The dimerization efficiency increased significantly as the shell thickness decreased to ~1 nm. When 1,4‐benzenedithiol was used as linker molecule, the yield of dimers was ~30%. Few dimers were obtained when mecaptobenzonic acid was used as linker. A thicker shell is associated with a low yield of dimer, whereas a thinner shell resulted in the formation of multimers and linear structures. The low number of linker molecules on the exposed area of monodisperse single nanoparticles and the lack of LSPR coupling effect (‘hot spots’) resulted in the disappearance of SERS signals of the linkers. The estimated SERS enhancement factor was about eight fold because of the strong coupling effect in the gap of the dimer with the distance of the dithiol molecular length. From the above results, SERS combined with SEM could be developed into powerful tools for monitoring the formation of dimers and positioning of single dimers. It may aid the control of assembly of Au nanoparticles and in probing key issues about SERS enhancements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
224.
The potential of two‐color resonant and degenerate four‐wave mixing spectroscopy for investigations of the complex spectra of transition metal dimers is explored. Two‐color resonant and degenerate four‐wave mixing spectroscopy scans of the well‐known A‐X and B‐X transitions in Cu2 are reported and compared with previous experimental data obtained from standard single‐resonance techniques. The selectivity of the method is shown to enable the measurement of isotopologue pure spectra without the need for isotopically enriched metal targets. Specific subsets of the rovibronic structure are separated in a congested spectral region of overlapping transitions. The sensitivity of the method compares satisfactorily with linear spectroscopic methods such as laser‐induced fluorescence and cavity ring‐down. A new laser vaporization source for the production of transition metal dimers and clusters has been constructed. The new design aims for a high number density and maximum possible shot‐to‐shot stability. The possibilities of further applications of non‐linear four‐wave mixing spectroscopy to Cu2 and other transition metal dimers are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
225.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
226.
In this study, surface enhanced Raman spectroscopy (SERS) was used to investigate the spectral characteristics of blood serum for the purpose of diagnosing stomach diseases. SERS spectral data was collected from patients with atrophic gastritis, both pre‐operation and post‐operation gastric cancer, and from healthy individuals. Visual differences in the SERS spectra were observed between the four groups which indicate corresponding biomolecule concentration changes in blood. To further investigate the diagnostic ability of human serum, the spectral data was analyzed with three chemometric processes. These three methods extracted features and classified from the spectral data. Principal component analysis (PCA) was first performed to reduce the dimensionality of the original spectral data. Then, the classification methods support vector machine (SVM), linear discriminant analysis (LDA) and classification and regression tree (CART) were used for the evaluation of diagnostic ability. Accuracies of 96.5%, 88.8% and 87.1% were obtained for PCA‐SVM, PCA‐LDA and PCA‐CART, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
227.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
228.
Nonlinear wave mixing in mesoscopic silicon structures is a fundamental nonlinear process with broad impact and applications. Silicon nanowire waveguides, in particular, have large third‐order Kerr nonlinearity, enabling salient and abundant four‐wave‐mixing dynamics and functionalities. Besides the Kerr effect, in silicon waveguides two‐photon absorption generates high free‐carrier densities, with corresponding fifth‐order nonlinearity in the forms of free‐carrier dispersion and free‐carrier absorption. However, whether these fifth‐order free‐carrier nonlinear effects can lead to six‐wave‐mixing dynamics still remains an open question until now. Here we report the demonstration of free‐carrier‐induced six‐wave mixing in silicon nanowires. Unique features, including inverse detuning dependence of six‐wave‐mixing efficiency and its higher sensitivity to pump power, are originally observed and verified by analytical prediction and numerical modeling. Additionally, asymmetric sideband generation is observed for different laser detunings, resulting from the phase‐sensitive interactions between free‐carrier six‐wave‐mixing and Kerr four‐wave‐mixing dynamics. These discoveries provide a new path for nonlinear multi‐wave interactions in nanoscale platforms.

  相似文献   

229.
建立了花生中36种农药及其代谢物残留的超高效液相色谱-串联质谱(UHPLC-MS/MS)快速检测技术。采用乙腈提取,增强型脂质去除净化剂(EMR-Lipid)净化,正离子多反应监测(MRM)模式测定。结果表明,所有农药的线性相关系数均大于0.994,在0.005,0.01,0.10 mg/kg 3个加标水平下,36种农药的平均回收率为70.4%~119%,相对标准偏差(RSDs)为1.3%~19.4%,方法的定量下限为0.002 5~0.05 mg/kg。该方法简便、快速,灵敏度高、净化效果好,适用于花生中农药多残留的快速检测分析。  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号