首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28432篇
  免费   2478篇
  国内免费   2882篇
化学   12066篇
晶体学   274篇
力学   728篇
综合类   184篇
数学   8402篇
物理学   5080篇
无线电   7058篇
  2024年   62篇
  2023年   309篇
  2022年   711篇
  2021年   796篇
  2020年   821篇
  2019年   752篇
  2018年   659篇
  2017年   769篇
  2016年   765篇
  2015年   760篇
  2014年   1157篇
  2013年   1814篇
  2012年   1516篇
  2011年   1890篇
  2010年   1621篇
  2009年   1999篇
  2008年   1946篇
  2007年   1966篇
  2006年   1772篇
  2005年   1467篇
  2004年   1302篇
  2003年   1104篇
  2002年   912篇
  2001年   722篇
  2000年   701篇
  1999年   656篇
  1998年   487篇
  1997年   475篇
  1996年   431篇
  1995年   442篇
  1994年   405篇
  1993年   350篇
  1992年   300篇
  1991年   223篇
  1990年   259篇
  1989年   271篇
  1988年   168篇
  1987年   139篇
  1986年   172篇
  1985年   141篇
  1984年   116篇
  1983年   54篇
  1982年   57篇
  1981年   63篇
  1980年   56篇
  1979年   49篇
  1978年   48篇
  1977年   39篇
  1976年   33篇
  1974年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
树脂吸附法处理水杨酸甲酯生产废水的研究   总被引:7,自引:0,他引:7  
采用吸附树脂NDA—99处理水杨酸甲酯生产废水,结果表明该树脂时废水中的5磺基水杨酸及水杨酸均具有良好的吸附—脱附性能.废水经预处理和吸附处理后,CODCr由57000-59000mg/L降至6300mg/L左右,去除率接近89%.用IBV8%NaOH 3BVH2O作脱附剂,在温度为60℃、流量为IBV/h的条件下,脱附率接近100%,树脂可重复使用.高浓度脱附液经酸化、浓缩、冷却结晶,可回收5—磺基水杨酸,回收率为95%左右。纯度为78%。  相似文献   
92.
根据CTP在离子交换树脂上的吸附容量和分离因数的大小,确定Duolite A-30树脂适合CTP与CDP,CMP之间的分离.对CTP在Duolite A-30树脂上的吸附动力学和热力学研究表明,在283.15K~303.15K之间,CTP的质量浓度在7.5g/L以上时,Duolite A-30树脂对CTP的吸附主要受颗粒扩散的控制,其有效扩散系数为D=3.47×10-7cm2/s,溶液的质量浓度≤1.0g/L时,CTP与Duolite A-30树脂之间的交换速率主要受液膜控制,其液膜扩散系数为Kf =4.112×10-4/s.同时测定了不同条件下三磷酸胞苷溶液在Duolite A-30树脂固定床离子交换柱中的穿透曲线,研究了进口浓度、进口流速、原料液温度、原料液的pH值及柱高对穿透曲线的影响.用二阶动力学推动力模型描述固定床动态过程,考察了轴向返混对穿透曲线的影响,并从穿透曲线回归得到总传质系数,模型计算值与实验数据符合良好.  相似文献   
93.
Summary Interpolatory quadrature formulae consist in replacing by wherep f denotes the interpolating polynomial off with respect to a certain knot setX. The remainder may in many cases be written as wherem=n resp. (n+1) forn even and odd, respectively. We determine the asymptotic behaviour of the Peano kernelP X (t) forn for the quadrature formulae of Filippi, Polya and Clenshaw-Curtis.
  相似文献   
94.
The properties of the empirical density function,f n(x) = k/n( j +j-1 + ) if j-1 + < x + where j-1 + and j + are sample elements and there are exactlyk – 1 sample elements between them, are studied in that practical point of view how to choose a suitablek for a good estimation. A bound is given for the expected value of the absolute value of difference between the empirical and theoretical density functions.  相似文献   
95.
96.
Summary We consider a mixed finite element approximation of the three dimensional vector potential, which plays an important rôle in the simulation of perfect fluids and in the calculation of rotational corrections to transonic potential flows. The central point of our approach is a saddlepoint formulation of the essential boundary conditions. In particular, this avoids the wellknown Babuka paradox when approximating smooth domains by polyhedrons. Using piecewise linear/piecewise constant elements for the vector potential/the boundary terms, we obtain optimal error estimates under minimal regularity assumptions for the solution of the continuous problem.  相似文献   
97.
Summary The definition of the average error of numerical methods (by example of a quadrature formula to approximateS(f)= f d on a function classF) is difficult, because on many important setsF there is no natural probability measure in the sense of an equidistribution. We define the average a posteriori error of an approximation by an averaging process over the set of possible information, which is used by (in the example of a quadrature formula,N(F)={(f(a 1), ...,f/fF} is the set of posible information). This approach has the practical advantage that the averaging process is related only to finite dimensional sets and uses only the usual Lebesgue measure. As an application of the theory I consider the numerical integration of functions of the classF={f:[0,1]/f(x)–f(y)||xy|}. For arbitrary (fixed) knotsa i we determine the optimal coefficientsc i for the approximation and compute the resulting average error. The latter is minimal for the knots . (It is well known that the maximal error is minimal for the knotsa i .) Then the adaptive methods for the same problem and methods for seeking the maximum of a Lipschitz function are considered. While adaptive methods are not better when considering the maximal error (this is valid for our examples as well as for many others) this is in general not the case with the average error.  相似文献   
98.
Summary A scheme that uses singular perturbation theory to improve the performance of existing finite element methods is presented. The proposed scheme improves the error bounds of the standard Galerkin finite element scheme by a factor of O(n+1) (where is the small parameter andn is the order of the asymptotic approximation). Numerical results for linear second order O.D.E.'s are given and are compared with several other schemes.  相似文献   
99.
Summary Operator equationsTu=f are approximated by Galerkin's method, whereT is a monotone operator in the sense of Browder and Minty, so that existence results are available in a reflexive Banach spaceX. In a normed spaceY error estimates are established, which require a priori bounds for the discrete solutionsu h in the norm of a suitable space . Sufficient conditions for the uniform boundedness u h Z =O(1) ash0 are proved. Well-known error estimates in [3] for the special caseX=Y=Z are generalized by this. The theory is applied to quasilinear elliptic boundary value problems of order 2m in a bounded domain . The approximating subspaces are finite element spaces. Especially the caseX=W 0 m, p (), 1<p<,Y=W 0 m. 2 (),Z=W 0 m. max (2,p) ()Wm, () is treated. Some examples for 1<p<2 are considered. Forp2 a refined technique is introduced in the author's paper [7].
  相似文献   
100.
The reaction of oxindoles with 5-hydroxypyrazolidines on the surface of potassium fluoride-modified alumina leads to 3-(5-pyrazolidinyl)oxindoles. The structure of these products was studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号