首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2473篇
  免费   840篇
  国内免费   3039篇
化学   2766篇
晶体学   59篇
力学   49篇
综合类   109篇
数学   1046篇
物理学   2155篇
无线电   168篇
  2024年   54篇
  2023年   103篇
  2022年   172篇
  2021年   180篇
  2020年   108篇
  2019年   136篇
  2018年   144篇
  2017年   199篇
  2016年   221篇
  2015年   216篇
  2014年   366篇
  2013年   373篇
  2012年   374篇
  2011年   386篇
  2010年   373篇
  2009年   449篇
  2008年   428篇
  2007年   310篇
  2006年   335篇
  2005年   239篇
  2004年   207篇
  2003年   179篇
  2002年   155篇
  2001年   125篇
  2000年   98篇
  1999年   62篇
  1998年   51篇
  1997年   50篇
  1996年   46篇
  1995年   42篇
  1994年   30篇
  1993年   20篇
  1992年   24篇
  1991年   27篇
  1990年   25篇
  1989年   29篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
  1959年   1篇
排序方式: 共有6352条查询结果,搜索用时 687 毫秒
191.
本文通过高分辨电子能量损失谱(EELS)的实验分析与密度泛函计算相结合的方法,研究了NaxCoO2·yH2O系统的电子结构特性和电子关联效应.实验结果表明,金属性Na0.3CoO2材料和电荷有序绝缘体Na0.5CoO2的O-K吸收边存在明显的结构差别,在Na0.5CoO2的EELS中第一个峰发生明显分裂,密度泛函计算证实这种分裂现象和电子关联效应直接相关.通过理论模拟谱线与实验谱线的比较确定了其电子关联强度为U=3.0 eV.在Na0.3CoO2·yH2O(y=0,0.6,1.3)超导体系中,实验发现其能损谱的低能部分随着水含量的增加发生系统的变化,损失峰向低能量方向逐步移动.电子结构计算表明水分子的插入可以引起费米面附近能态原子轨道杂化情况的改变,从而导致EELS的变化.  相似文献   
192.
全无机无铅钙钛矿Cs2TiBr6具有光电特性良好、带隙可调和环境友好等优点,是一种潜力巨大的光吸收材料。为改善Cs2TiBr6的相关性能,我们采用基于第一性原理的方法,针对Pd、Cl掺杂的Cs2TiBr6钙钛矿结构进行了研究。结果表明,用Pd取代Ti后产生杂质带,将原来间接带隙的Cs2TiBr6转变为直接带隙材料。用25.0%Pd掺杂后,晶体带隙值降低26%,掺杂后的晶体在320~415 nm近紫外光区吸收能力加强约50%,在645~900 nm的红外光区及近红外光区的光吸收能力加强约134%。在此基础上,将Cl与25.0%Pd共掺杂时,Cl掺杂不仅可以把Pd的形成能在单掺的基础上减小约9%,而且Cl的不同掺杂位置对材料的光电性能也有一定的影响。  相似文献   
193.
为探究吸附法捕获CO2过程中的微观机理和吸附剂材料间的作用关系,基于密度泛函理论方法,综合比较了典型吸附剂包括煤基官能团、Fe、限域离子液体、Na2CO3、SrTiO3与CO2的吸附过程和差异性.根据不同计算策略,着重分析比较了吸附能、结构优化参数、吸附构型以及原子分布等参数.结果表明,化学吸附中CO2分子与吸附面呈平行关系时通常吸附能最大;在一种材料的同类型官能团中,吸附能大小与氧原子的数量呈正相关关系;吸附过程中C-O键的伸长活化会生成一种重要的中间产物CO2-.提出在探寻CO2吸附材料时可以在含氧原子较多的官能团、活性金属表面等方面进一步探究.最后对基于密度泛函理论的CO2的吸附机理的进一步研究方向进行了展望.  相似文献   
194.
研究伪麻黄碱的拉曼光谱和吸附在纳米银基底上的表面增强拉曼光谱(SERS),利用密度泛函理论B3LYP/6-311G++(d, p)方法对伪麻黄碱分子进行了计算,得到了分子构型信息和理论拉曼光谱,用Gaussview软件对分子振动模式进行了全面的归属,在伪麻黄碱的表面增强拉曼光谱中,采用了自组装方法获得了团簇银纳米表面增强基底,实现了很好的增强效应.实验结果表明:伪麻黄碱的拉曼光谱计算结果和实验结果基本一致,理论计算为伪麻黄碱分子振动峰位的归属提供了重要的依据,伪麻黄碱分子与银纳米表面化学吸附,苯环垂直于纳米基底表面,研究结果为伪麻黄碱的拉曼光谱检验分析提供了理论依据,也为苯丙胺类毒品的光谱分析研究提供了参考.  相似文献   
195.
利用密度泛函理论探究受限于纳米通道内的水分子结构、集体振动频率以及电子特性。研究表明受限于直径为0.677~1.086 nm的纳米通道内的水分子,它们在太赫兹频段存在两种典型的振动模式,一种是平行于通道的轴向集体振动,另一种是受限水分子间的氢键拉伸振动。通过对比不同受限域下,受限水的这两种典型的振动模式所对应的特征频率,发现它们的数值变化存在一定的规律。对于受限水的轴向集体振动,随着通道的管径从0.677增大到0.815 nm,它所对应的特征频率整体发生了红移,然而随着管径继续增大,该特征频率的变化发生了分化,即一部分发生了红移,另一部分发生了蓝移。对于受限水的氢键拉伸振动,随着管径从0.677增大到0.815 nm,它所对应的特征频率整体发生了蓝移,然而随着管径继续增大,该特征频率的变化也发生了分化。其内在机理通过电子密度拓扑分析揭示为:水分子与通道或水分子间所形成H…π键和O…H键的键临界点电子密度ρ值的减小造成了键振动的红移,反之造成蓝移。鉴于细胞的动力学平衡,例如渗透压和体积变化,它们与受限水在水通道中的结构和动力学特性紧密相关,本研究将有助于在分子层次加深太赫兹波与受限水相互...  相似文献   
196.
基于密度泛函理论研究了H2S、HCN、PH3 在FeO(100)表面的吸附行为,其吸附位点主要考虑四个:Fe-top(铁顶位)、O-top(氧顶位)、Hollow(空位)、Bridge(桥位)。结果表明H2S吸附在O-top吸附位点的吸附能最小,为-1.02ev,即在该位点的吸附体系最稳定。当HCN吸附在FeO(100)表面时,各吸附位点的稳定顺序为Hollow>Fe-top>Bridge>O-top。PH3 的最稳定的吸附位点与H2S的一致,为O-top吸附位点,其吸附能为-1.11ev。当H2S吸附在O-top吸附位点时,H2S与FeO(100)表面的电荷转移量最多,说明该吸附构型最稳定,而HCN吸附在FeO(100)表面,在Hollow吸附位点的电荷转移量最多,也即该吸附位点属于最稳定吸附位点。PH3与FeO(100)表面之间的电荷转移量最多的吸附位点与H2S的相同。当H2S和PH3吸附在O-top吸附位点时,吸附后的态密度曲线整体向低能级移动,峰值降低,其吸附结构变得更加稳定。而HCN吸附在Hollow位点时,吸附后的HCN态密度曲线向能量更低的区域移动,吸附体系变得更稳定。  相似文献   
197.
基于木犀草素的结构特点,采用量子化学的密度泛函理论(DFT)方法研究了溶剂和酯基对木犀草素抗氧化活性的影响.首先,研究了化合物中分子内氢键的性质.其次,从热力学角度通过抽氢反应(HAT)、逐步电子转移质子转移(SET-PT)和质子优先损失电子转移(SPLET)机制分析了化合物的抗氧化能力.氢键性质分析发现,木犀草素及其...  相似文献   
198.
头孢类抗生素定量结构-活性关系的密度泛函研究   总被引:1,自引:0,他引:1  
用量子化学密度泛函方法B3LYP对9种头孢类抗生素的电子结构进行了理论计算, 并对它们进行了定量构效关系研究. 建立了头孢类抗生素分子的结构-活性数学模型: 头孢类抗生素的抑菌活性与QC8, QC7以及偶极距(Dipole)呈正相关关系.  相似文献   
199.
用密度泛函B3LYP方法对3,9-咔唑低聚物[(3,9-carbazole)n(n=1,2,3,4,6,8)]体系进行了全优化, 计算得到电离能、电子亲合势、空穴抽取能及电子抽取能等相关能量, 用ZINDO和TD-DFT方法计算得到吸收光谱; 分析了各种能量的变化及光谱规律. 用外推法由低聚物分子的各种性质与聚合度n相联系得到高聚物的性质, 将所得结果与2,7-咔唑(2,7-carbazole)及类似聚合物进行了比较分析. 结果表明, 3,9位聚合的咔唑整体共轭程度降低, 光谱蓝移, 其IP值和聚芴相近, 可以作为空穴接受材料应用于多层电子荧光器件的空穴传输层. 用CIS方法进行优化得到部分分子的S1激发态结构, 用ZINDO和TD-DFT方法得到对应的发射光谱.  相似文献   
200.
对于均值为零的平稳相伴随机变量序列,首先证明了在L(n)=EX_1~2 2 sum from n to j=2 Cov(X_1,X_j)是一个缓变函数的条件下的泛函型几乎处处中心极限定理.另外还给出了正则化部分和函数的对数平均几乎处处收敛性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号