首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   13篇
  国内免费   12篇
化学   28篇
晶体学   1篇
力学   37篇
综合类   4篇
数学   3篇
物理学   26篇
无线电   258篇
  2023年   3篇
  2022年   9篇
  2021年   8篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   19篇
  2013年   13篇
  2012年   20篇
  2011年   24篇
  2010年   22篇
  2009年   28篇
  2008年   34篇
  2007年   22篇
  2006年   13篇
  2005年   27篇
  2004年   17篇
  2003年   9篇
  2002年   8篇
  2001年   14篇
  2000年   6篇
  1999年   1篇
  1998年   7篇
  1997年   6篇
  1996年   10篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
351.
大面积金属板材304L/Q235B的爆炸焊接过程涉及炸药爆轰、金属板材的高速碰撞和塑性变形等。采用有限元法计算模拟这个问题时,网格单元会发生扭曲畸变现象,导致计算精度下降,甚至出现单元负体积而使计算终止,并且炸药爆轰形成气体产物飞散过程也很难模拟。为了能模拟大面积金属板材的爆炸焊接整个过程并获得合理的技术工艺参数,采用物质点法进行三维数值模拟分析。物质点法作为一种无网格法,在模拟冲击动力学问题中主要采用显式积分算法。通过将拉格朗日质点单元与固定的欧拉背景网格相结合,可以实现爆炸焊接的复板与基板的高速碰撞、炸药滑移爆轰、金属板面的塑性变形过程的数值模拟,并给出爆炸复合板材的形变、有效塑性应变和复板与基板的碰撞速度的计算结果。采用物质点法模拟的复合板材变形与爆炸焊接实验结果基本一致。计算复板与基板的碰撞速度这个重要的物理参数时,物质点法与Richter理论公式的相对误差不超过13%。数值计算和实验结果表明,物质点法在数值精度和计算效率方面具有优势,物质点法是研究金属焊接爆炸问题的一种有效数值方法。  相似文献   
352.
陈伟  谢普初  刘东升  史同亚  李治国  王永刚 《爆炸与冲击》2021,41(4):043102-1-043102-9
采用不同热处理工艺制备了3种晶粒尺寸(60、100、500 μm)的高纯铝板材,利用平板撞击实验研究了其层裂行为。通过改变飞片击靶速度,在靶板中实现初始层裂状态和完全层裂状态。基于自由面速度时程曲线和微损伤演化及断口显微形貌分析,讨论了晶粒尺寸对高纯铝板材层裂特性的影响规律。实验结果显示:(1)晶粒尺寸对高纯铝板材层裂特性的影响强烈依赖于冲击加载应力幅值,在低应力条件下,层裂强度与晶粒尺寸之间表现出反Hall-Petch关系,而在高应力条件下,晶粒尺寸对层裂强度几乎没有影响;(2)随着晶粒尺寸的增大,靶板损伤区微孔洞的尺寸和分布范围均增大,但数量显著减少,在微孔洞周围还发现比较严重的晶粒细化现象;(3)随着晶粒尺寸的增大,层裂微观机制从韧性沿晶断裂向准脆性沿晶断裂转变,且在断口上观察到少量随机分布的小圆球,归因于微孔洞长大和聚集过程中严重塑性变形引起的热效应。  相似文献   
353.
(上接2012年第7期)3聚四氟乙烯覆铜板市场概况聚四氟乙烯板材使用由来已久,一般使用传统的产品分类按IPC4103可以分为以下10个类别(表6)。常用是前面美国军标规范的几只产品,都是单纯树脂,没有填料改性的板材。  相似文献   
354.
采用氧瓶燃烧法对无卤低烟阻燃电缆料样品进行燃烧,用去离子水作为吸收液吸收释出的氯化氢气体,并用硫氰酸汞分光光度法测定样品中氯含量。氯离子的质量浓度在0.20~5.00mg.L-1范围内与吸光度呈线性关系。该方法用于无卤低烟阻燃电缆料样品中微量氯的测定;用标准加入法测得回收率在96.0%~103%之间,测定值的相对标准偏差(n=5)均小于4.5%。  相似文献   
355.
一种无卤阻燃ABS体系的阻燃性能研究   总被引:3,自引:0,他引:3  
ABS是本世纪40年代发展起来的通用型热塑性材料[1],它有良好的力学性能,耐化学腐蚀、易加工等优点[2-6].  相似文献   
356.
A new approach is developed to measure the dynamic characteristics of metal sheet under laser shock,including deformation velocity,strain,and strain rate.The detecting laser beam is partially shaded by the target deformation induced by the laser action.A photodiode transforms the received beam intensity real time into an electrical signal which could record the process of the target deformation.The functional relation between the electrical signal and the deformation of the metal sheet is derived.The deformation curve of a thin aluminum and the velocity curve of its deformation are also obtained during the exper-iment.The results indicate that the average velocity of the elastic deformation of the target can reach 2.999×10 3 m/s in the central area.This new method provides an approach in the study of the effect of strain rate on deformation.  相似文献   
357.
The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium used in VPF is one kind of semisolid, flowable and viscous material and its deformation behavior can be described by the visco-elastoplastic constitutive model. A sectional finite element model for the coupled deformation analysis between the visco- elastoplastic pressure-carrying medium and the elastoplastic sheet metal is proposed. The resolution of the Updated Lagrangian (UL) formulation is based on a static explicit approach. The frictional contact between sheet metal and visco-elastoplastic pressure-carrying medium is treated by the penalty function method. Coupled deformation between sheet metal and visco-elastoplastic pressure-carrying medium with large slip is analyzed to validate the developed algorithm. Finally, the viscous pressure bulging (VPB) process of DC06 sheet metal is simulated. Good agreement between numerical simulation results and experimental measurements shows the validity of the developed algorithm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号