首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17914篇
  免费   2883篇
  国内免费   709篇
化学   316篇
晶体学   8篇
力学   772篇
综合类   192篇
数学   1742篇
物理学   2509篇
无线电   15967篇
  2024年   238篇
  2023年   826篇
  2022年   867篇
  2021年   945篇
  2020年   678篇
  2019年   871篇
  2018年   426篇
  2017年   589篇
  2016年   724篇
  2015年   813篇
  2014年   1136篇
  2013年   981篇
  2012年   1097篇
  2011年   1078篇
  2010年   1051篇
  2009年   996篇
  2008年   1238篇
  2007年   947篇
  2006年   796篇
  2005年   844篇
  2004年   793篇
  2003年   667篇
  2002年   437篇
  2001年   369篇
  2000年   312篇
  1999年   251篇
  1998年   247篇
  1997年   234篇
  1996年   193篇
  1995年   180篇
  1994年   145篇
  1993年   131篇
  1992年   93篇
  1991年   81篇
  1990年   100篇
  1989年   62篇
  1988年   15篇
  1987年   22篇
  1986年   10篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
由地现代空袭模式采用多批次、多方向、层次、连续饱和攻击的情形,地面防空不可能人为作出合理的射出决策,为提高武器系统对付多目标的能力,必须建立全自动化的地面防空指挥系统,而建立这一系统又必须着重解决作战过程中的重点:目标分配及拦截机动目标。  相似文献   
82.
林志诚  马永航 《移动信息》2024,46(1):169-171
边缘智能是一种新兴的智能计算模式,其将人工智能技术和边缘嵌入式设备结合,被广泛应用于物联网系统。智能摄像机是典型的边缘设备之一,它能提供低延迟的视频处理能力,适用于智能家居、智能交通、智能监控等领域。然而,由于摄像机的计算资源有限,传统的行为识别模型难以在本地完成计算任务。为解决这一问题,文中提出了一种基于边缘计算的架构,利用深度学习目标检测算法YOLO v3对视频行为进行识别。在该架构中,智能移动终端负责数据采集和压缩,边缘服务器承担大部分目标检测任务,而检测困难的目标和模型训练则由云服务器负责。为更好地适应边缘设备,本文采用轻量化的神经网络MobileNet替换YOLO v3模型的特征提取模块。经过测试,该架构能有效提取和识别视频中的静态和动态行为,为实现边缘计算环境下低成本、大规模的行为识别提供了有益的参考。  相似文献   
83.
基于扩展惠更斯-菲涅尔原理和维格纳分布函数(Wigner distribution function,WDF)二阶矩,推导了部分相干扭曲涡旋光束(partially coherent twisted vortex beam,PCTVB)在海洋湍流中传输时的M2因子和角扩展θ(z)。通过数值模拟方法详细研究了海洋湍流对光束M2因子和角扩展θ(z)的影响,结果表明温度方差耗散率ΧT和温度盐度贡献比w越大、动能耗散率ε和各向异性因子ξ越小时对PCTVB的M2因子和角扩展θ(z)的影响越大。此外研究发现,相较于非扭曲涡旋光束(PCVB),PCTVB有更好的抗海洋湍流的能力,且增大拓扑荷数m以及扭曲因子绝对值|μ|后,PCTVB的M2因子和角扩展θ(z)显著减小,光束的抗海洋湍流能力增强。并且增大束腰宽度w0和波长λ,以及减小初始相干长度δηη(η=x,y)同样可以增加光束抗海洋湍流的能力。本文的数值研究结果对海洋光通信具有重要意义。  相似文献   
84.
通导共生是指通信和导航信号共存于卫星生态环境中。针对定位或通信的单一功能低轨卫星星座,在定位或通信信号不可用时难以快速进行定位管理的难题,提出了应用扩展卡尔曼滤波器算法,对低轨卫星通导共生星座的机会信号进行定位解算,突破定位管理对单一导航系统的依赖。首先,介绍了卡尔曼滤波的基本原理,结合低轨卫星多星座定位管理算法,提出了一种基于机会信号的卡尔曼滤波定位管理算法;其次,分析了所提算法的优点,包括提高定位精度、提高定位效率、提高定位稳定性等;最后,进行了实验,验证了所提算法的有效性。结果表明,所提算法能够有效地提高定位精度、定位效率、定位稳定性,为低轨卫星通导共生星座定位管理提供了一种有效的解决方案。  相似文献   
85.
李刚  刘京生  耿蕊 《激光与红外》2023,53(7):987-995
复杂背景中的红外弱小目标因亮度低、尺寸小、可用特征少而难以检测。如何在检测中抑制背景杂波、提高目标信噪比成为该领域的研究热点与难点。本文对基于人类视觉系统对比度机制的小目标增强与背景抑制技术的演进和性能进行了归纳与分析。局部对比度测度窗口由单尺度向多尺度,乃至动态或自适应尺度的发展,满足应用中对未知尺寸小目标同步快速检测的需要;局部对比度测度计算方法由简单到复杂、依据低阶信息到采用高阶信息的变化,有利于更全面地抑制复杂背景、进一步增强目标。因此,将成为未来人类视觉对比度机制小目标检测算法的发展方向。  相似文献   
86.
红外探测系统需要尽早发现目标以便及时拦截,但是红外图像上的小目标检测是一个挑战十足的任务。为了提高检测准确率,提出一种基于自适应对比度增强的红外小目标检测方法。为了利用自注意力机制和卷积各自的优势,设计了一个高效的特征提取网络和一个面向小目标的检测头。同时为了解决实际应用中出现的弱目标,在检测子网络前添加了一个图像预处理子网络,该模块可以自适应地调节图像对比度。在红外空中小目标数据集上的实验表明,提出的方法能达到93.76%的检测精度,与经典的检测方法相比,能够更好地平衡检测精度和召回率,证明了方法的巨大应用潜力。  相似文献   
87.
本文根据波数域中的相位误差详细地分析了任意构型双基合成孔径雷达(Bistatic Synthetic Aperture Radar,Bi-SAR)运动目标的图像特征。不同于传统的在相位历史域进行相位误差分析的方法,本文以极坐标算法(Polar Format Algorithm,PFA)为例,对PFA波数域的两维相位误差进行了详细的分析。该分析方法对其他算法例如BP算法同样适用。SAR成像算法的一般流程为,先将信号从相位历史域转化到波数域,然后再变换到图像域。然而,从相位历史域到波数域的过程有可能引入新的相位误差,因此在相位历史域分析相位误差特征并不完全准确,根据该特性预测的图像域成像结果存在一定的误差。而波数域与图像域之间具有直接的傅里叶变换关系,傅里叶变换的各种性质又是已知的,因此利用波数域和图像域之间的傅里叶变换关系,根据波数域的相位误差特性可以准确地预测PFA图像中运动目标的成像特征。一方面,本文揭示了波数域中的两维相位误差导致图像域中的目标发生两维位置偏移和两维散焦的现象,并且上述两维位置偏移和两维散焦的方向沿着同一条倾斜的直线。也就是说,无论运动目标的速度矢量指向何方,图像域...  相似文献   
88.
针对多无人机编队飞行试验的需求,文中开发一种半实物仿真系统,用以开展多机编队飞行的半实物仿真试验,并对编队功能和性能进行试验验证。根据无人机系统的组成和硬件配置,设计并构建半实物仿真系统的架构。针对机载传感器的接口类型完成仿真系统的硬件选型,并设计仿真电缆。基于被试无人机的气动参数和发动机参数,建立无人机的Simulink六自由度实时仿真模型,并开发部署相应的仿真环境和仿真软件。基于该仿真系统,进行8架无人机编队飞行的半实物仿真试验。试验结果表明,参试的8架无人机能够实现编队飞行的功能,并根据给定的不同队形的指令进行队形变换和保持。所设计系统不仅能在飞行试验前进行编队仿真验证和测试,还能对地面操作手进行飞行试验前的模拟训练。  相似文献   
89.
朱佩佩  吴元  赖作镁 《电讯技术》2022,62(5):619-624
无人机目标检测与识别任务中,目标随着飞行高度的改变尺寸发生显著变化。常规目标检测模型中,获取的小目标细节信息有限,检测精度较低;而适用于小目标的实时检测模型往往容易丢失大目标的背景信息,降低大目标的检测精度。针对以上多尺度目标检测识别任务难点,提出一种基于改进特征金字塔网络(Feature Pyramid Network, FPN)结构的实时多尺度目标检测识别模型。该模型通过增加特征金字塔层级覆盖更广的目标尺度,获取更为丰富的目标信息;同时,利用跨连接增加不同尺度特征融合的多样性,降低特征传导距离,保留更加完整的尺度特征来提高模型检测识别多尺度目标的性能。通过实验发现,相比于原始网络结构和相同特征层级的四层特征金字塔结构,加入改进特征金字塔结构的多尺度目标检测模型识别性能得到了提升。  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号