首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6618篇
  免费   1184篇
  国内免费   315篇
化学   157篇
晶体学   4篇
力学   186篇
综合类   77篇
数学   1246篇
物理学   1711篇
无线电   4736篇
  2024年   44篇
  2023年   168篇
  2022年   222篇
  2021年   195篇
  2020年   156篇
  2019年   216篇
  2018年   126篇
  2017年   206篇
  2016年   221篇
  2015年   256篇
  2014年   467篇
  2013年   330篇
  2012年   390篇
  2011年   445篇
  2010年   394篇
  2009年   443篇
  2008年   478篇
  2007年   399篇
  2006年   380篇
  2005年   344篇
  2004年   364篇
  2003年   325篇
  2002年   220篇
  2001年   196篇
  2000年   138篇
  1999年   142篇
  1998年   108篇
  1997年   111篇
  1996年   92篇
  1995年   98篇
  1994年   82篇
  1993年   64篇
  1992年   73篇
  1991年   81篇
  1990年   62篇
  1989年   57篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1981年   3篇
排序方式: 共有8117条查询结果,搜索用时 15 毫秒
101.
针对传统全差分运算放大器电路存在输入输出摆幅小和共模抑制比低的问题,提出了一种高共模抑制比轨到轨全差分运算放大器电路。电路的输入级采用基于电流补偿技术的互补差分输入对,实现较大的输入信号摆幅;中间级采用折叠式共源共栅结构,获得较大的增益和输出摆幅;输出级采用共模反馈环路控制的A类输出结构,同时对共模反馈环路进行密勒补偿,提高电路的共模抑制比和环路稳定性。提出的全差分运算放大器电路基于中芯国际(SMIC) 0.13μm CMOS工艺设计,结果表明,该电路在3.3 V供电电压下,负载电容为5 pF时,可实现轨到轨的输入输出信号摆幅;当输入共模电平为1.65 V时,直流增益为108.9 dB,相位裕度为77.5°,单位增益带宽为12.71 MHz;共模反馈环路增益为97.7 dB,相位裕度为71.3°;共模抑制比为237.7 dB,电源抑制比为209.6 dB,等效输入参考噪声为37.9 nV/Hz1/2@100 kHz。  相似文献   
102.
由压电陶瓷驱动的快速反射镜(FSM)现已被广泛用于自适应光学系统的执行环节,为了对其迟滞效应精确建模,该文提出了一种针对FSM的IDE-BPNN建模方法。基于Madelung法则以最小二乘法构建称迟滞算子作为迟滞运动的基本描述,扩展训练用的数据集,并采用改进的差分进化算法(IDE)对BP神经网络(BPNN)进行训练。实验表明,当输入30 Hz衰减的正弦信号时,IDE-BPNN模型的单轴最大误差为0.745μrad,归一化最大误差为0.87%,归一化均方根误差为0.36%。相较于最小二乘建模法,相对于最小二乘模型误差大幅缩小,有较好的使用价值。  相似文献   
103.
基于110 nm CMOS工艺设计了一种应用于HDMI接收端电路的宽频带低抖动锁相环。采用一种改进型双环结构电荷泵,在25~250 MHz的宽输入频率范围内实现了快速锁定。通过高相噪性能的伪差分环形振荡器产生了调谐范围为125 MHz~1.25 GHz的时钟信号。仿真实验结果表明,该锁相环的锁定时间小于1.2μs,在振荡器工作频率为0.8 GHz时,其相位噪声为-100.0 dBc/Hz@1 MHz,输出时钟峰峰值抖动为4.49 ps。  相似文献   
104.
为及时监测树木内部结构状态,提出一种基于电阻抗成像理论的活立木无损检测方法,设计一种16电极的数据采集系统。该系统以LabVIEW程序控制数据采集卡为核心,使用NI公司的USB-6361数据采集卡产生正弦交流电压信号,再将其输入压控电流源电路转换为电流激励信号。激励信号循环注入到立木表面的16个电极中,按照相邻激励-相邻测量的方式采集立木边界电压。然后,利用仪器仪表放大电路、可编程增益二级放大电路、高通滤波电路对采集的信号进行处理,以达到放大和滤波的目的。最后,通过数据采集卡模数转换后将数据上传到计算机端,采用敏感矩阵算法实现图像重建。实验结果表明,所设计系统在激励频率为1~20 kHz时,可以有效地识别立木中空洞的位置,并反映出空洞的相对尺寸和大致轮廓,能够实现基于电阻抗成像的立木无损检测。  相似文献   
105.
史小卫  魏峰  刘伟申 《微波学报》2023,39(5):107-113
在现代无线通信系统中,差分电路相比单端电路而言具有更强的抗干扰能力,因此受到了国内外学者的广泛关注。文章介绍了混合模散射参数、差分器件设计中常用的微带线和缝隙线及两种传输线之间的相互转化,并介绍了基于微带线和缝隙线转换结构的两种全差分带通滤波器。两种滤波器分别实现了多频段和宽带的差模传输特性以及宽带的共模抑制特性。文章还给出了差分耦合器、差分功分器和差分天线等差分器件的设计。仿真与实测结果吻合较好,验证了设计方法的正确性。  相似文献   
106.
针对多输出端口输出光功率的不均匀性问题,文章设计了一种基于绝缘体上硅(SOI)的1×4多模干涉(MMI)耦合器,提出了一种优化其均匀性的新方法。耦合器输入/输出端采用锥形波导,为提升MMI耦合器的均匀性,对输出端锥形波导采用不等宽设计,通过优化,四路输出端口均匀性高达0.007 4 dB,而总的插损仅有0.058 dB。依据该方法最终使得输出端波导的传输常数失配,避免了波导之间的串扰,实现了对MMI耦合器输出端口均匀性的提升。  相似文献   
107.
对于均匀线性天线阵列近场目标定位研究是探测领域重要难点之一。本文根据前期近场基于差分迭代传播计算模型研究基础,提出一种新型高精度近场无源定位算法,针对均匀线性阵列近场目标空间几何结构,突破传统菲涅尔近似近场传播模型的束缚,建立全新高精度目标关系模型并形成定位解析表达式,通过阵列处理估计改进到达时差(TOA)定位观测量,利用新算法快速准确地获取近场多个独立同分布目标的定位信息。仿真实验结果表明:新算法机理不同于传统近场估计分析,特别是定位解析式的引入使得位置精度提升的同时计算量大为降低,更好地适应了近场非线性关系结构,性能分析显示TOA误差对定位估计精度的影响较为有限,在典型信噪比条件下新算法的距离和角度估计精度优于几种常规处理算法,未来具有深入研究的价值。  相似文献   
108.
高超声速目标在临近空间飞行时,目标周围及尾迹区域中电离形成的等离子体对卫星信号的传播会造成较大的衰减,这一现象有助于针对高超声速目标的被动式雷达探测。为研究全球卫星导航系统(Global Navigation Satellite System, GNSS)信号在鞘套尾迹中的衰减特性,采用计算流体动力学模拟了高超声速目标在不同飞行条件下的三维绕流流场,并以此建立绕流流场电磁模型。然后通过改进的移位算子时域有限差分方法(Shift Operator Finite?Difference Time?Domain, SO?FDTD)仿真计算GNSS信号在目标流场尾迹中的衰减特性,并绘制了信号通过流场后的透射系数分布图。仿真计算发现,临近空间高超声速目标尾迹对GNSS信号有明显的衰减作用,GNSS信号载波频率、目标飞行的高度和速度对GNSS信号透射系数的大小及分布结构均会带来影响。该研究中的结论为基于GNSS的临近空间高超声速目标无源探测提供了一定依据。  相似文献   
109.
基于时空调制(STM)的单端环行器因其输入信号和调制信号的混合,在接近所需频带处将受到互调产物(IMP)的影响,这些IMP不仅会对相邻通道造成干扰,还会限制调制参数。差分环行器通过匹配两个单端环行器,以180°相位差的调制信号分别调制两个单端环行器,从而消除IMP,有效地改善了环行器的插入损耗、带宽及功率容量等指标,提高了环行器的性能,并降低了对调制信号的要求。该文描述了差分环行器的基本原理,对差分环行器的电路结构、调制方式及测试方法进行了总结。对比分析表明,差分体声波(BAW)环行器在插入损耗、隔离度及功耗等方面表现出优异的性能,有望取代大多数商业系统中的铁氧体环行器。  相似文献   
110.
文章提出了一种宽带注入锁定三倍频器。在传统注入方式基础上,倍频器采用了推-推差分对输入信号进行二倍频,并将产生的二次谐波通过变压器耦合至注入管的源极共模点,增强了注入管源极共模点二次谐波。由于注入电流是由注入信号与源极共模点二次谐波进行混频而产生,因此注入电流也被增强,从而增大了锁定范围。除此之外,三倍频采用了四阶谐振器,谐振阻抗的相位在过零点被平坦化,锁定范围进一步被增大。采用标准CMOS 65 nm工艺设计三倍频,芯片面积为720×670 μm2,1.2-V供电时的功耗为15.2 mW。0 dBm注入功率下三倍频的锁定范围为19.2~27.6 GHz,对应的基波抑制比大于25 dB,二次谐波抑制大于35 dB。注入锁定三倍频器可满足5G收发机中本振源的要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号