首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3325篇
  免费   472篇
  国内免费   443篇
化学   145篇
晶体学   29篇
力学   722篇
综合类   34篇
数学   104篇
物理学   589篇
无线电   2617篇
  2024年   33篇
  2023年   78篇
  2022年   93篇
  2021年   100篇
  2020年   80篇
  2019年   103篇
  2018年   64篇
  2017年   103篇
  2016年   115篇
  2015年   112篇
  2014年   242篇
  2013年   159篇
  2012年   189篇
  2011年   188篇
  2010年   212篇
  2009年   232篇
  2008年   250篇
  2007年   228篇
  2006年   211篇
  2005年   179篇
  2004年   182篇
  2003年   183篇
  2002年   113篇
  2001年   106篇
  2000年   70篇
  1999年   60篇
  1998年   71篇
  1997年   73篇
  1996年   75篇
  1995年   67篇
  1994年   42篇
  1993年   41篇
  1992年   39篇
  1991年   43篇
  1990年   46篇
  1989年   34篇
  1988年   11篇
  1987年   9篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有4240条查询结果,搜索用时 828 毫秒
101.
运用了基于相场描述的拓扑优化方法,来寻找在拉伸和压缩中表现出不对称强度行为的连续体结构的最优布局。依据Drucker-Prager屈服准则和幂率插值方案,优化问题可以描述为在局部应力约束下的最小化结构的体积。用qp放松法来解决应力约束的奇异性,并采用基于P-norm函数的聚合方法对应力约束进行凝聚,该方法实现了约束个数的降低,同时引入了稳定转化法来处理大量的局部应力约束和高度非线性的应力行为,以修正应力,提高优化收敛的稳定性。在优化问题求解时,使用拉格朗日乘子法对目标函数和应力约束进行处理。利用伴随变量法进行灵敏度分析,并通过求解Allen-Cahn方程更新相场函数设计变量。数值算例证明了该优化模型和相应数值技术的有效性,相关算例还揭示了考虑拉压不同强度和考虑同拉压强度约束时得到的结构优化拓扑构型具有显著的差异。  相似文献   
102.
聚合物的热压力系数及内压   总被引:2,自引:0,他引:2  
刘国杰  虞大红 《化学学报》1996,54(2):113-118
本文将我们在前文中提出的修正van der Waals模型, 推广到了液态聚合物中, 从而建立了一个能在宽阔温度范围内准确计算聚合物热压力系数的关系式。式中ν和M分别为聚合物的比体积和链节的摩尔质量, A为聚合物的特性常数。对于本文考察的五种聚合物, 发现它们的链节大小均为聚合物的三个结构单元。  相似文献   
103.
史济斌  刘国杰 《化学学报》1993,51(6):521-526
本文将Eyring的液体粘性流动分子模型推广到了液体混合物,并用热力学方法导出一个无限稀释溶液中溶质的的放散系数与溶剂内压间的关系式.推导表明,扩散所需的空穴大小适为一个溶质分子所占液体的体积.扩散的活化能不仅取决于溶剂对溶质分子的作用能,而且还与在溶剂中形成空穴的难易程度有关.  相似文献   
104.
通过简单的Wittig反应合成了一个荧光化合物9,10-二(N-苯基吲哚-3-乙烯基)蒽(IA-Ph); 通过核磁共振和质谱对其结构进行了确认; 利用荧光发射光谱和紫外吸收光谱对其光物理性质进行了表征. 结果表明, 化合物IA-Ph兼具聚集诱导荧光(AIE)和压致荧光变色性质, 在相同浓度下, 该化合物在THF/H2O(体积比1∶9)混合溶液中的荧光强度比在纯四氢呋喃(THF)溶液中增加了12倍, 具有明显的AIE效应. 通过简单而有效的机械力研磨, 化合物可以从初始的发绿光转变为研磨后的橙红光, 光谱红移约68 nm; 而且在加热或溶剂熏蒸条件下, 化合物的颜色可以回复到起始的绿光, 具有完全可逆性.  相似文献   
105.
基于自组装技术制备了3种不同粒径的聚苯乙烯微球阵列,并翻制了与微球阵列互补的软模板.基于室温无外压的转移印刷技术制备了聚甲基丙烯酸甲酯半球形微纳阵列,然后基于原位光还原技术在聚甲基丙烯酸甲酯半球表面制备Ag纳米颗粒,构筑了拉曼增强的半球状多级Ag基底.转移印刷技术的关键是利用软模板自身的低表面能和表面羟基化的图案化材料与亲水基底界面间的氢键作用力.  相似文献   
106.
为了改善染料敏化太阳电池内电子的传输复合过程, 研究者尝试不同方法制备或改性TiO2薄膜. 对TiO2薄膜进行后处理, 在其表面引入一层小颗粒层, 是一种有效的方法并被广泛研究. 通过对TiO2薄膜不同时间的电沉积表面修饰, 细致研究了表面修饰后染料敏化太阳电池微观性能的变化机制. 采用阳极氧化法在TiCl3水溶液中对TiO2薄膜进行电沉积后处理, 将溶液pH值调至2.2, 装置的反应速率由恒电位仪控制. 不同沉积时间电池带边移动以及电子传输复合的动力学过程, 借助强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)和电化学阻抗谱(EIS)等探测技术表征. 研究表明, 电沉积在TiO2薄膜表面引入了大量浅能级陷阱态, 以致电势较高时电容随沉积时间延长增加明显. 不同时间的电沉积表面修饰在TiO2薄膜表面形成了新的小颗粒层并改善了TiO2颗粒间接触, 在改善电子注入及收集过程的同时, 也有效抑制了内部电子复合. IMPS/IMVS结果表明, 电沉积对动力学过程改善的效果受光强影响明显, 弱光下作用更为突出. 此外, 电池开路电压主要受带边移动及内部复合变化影响, 随沉积时间延长, 表面电荷的增多使TiO2薄膜带边逐渐正移, 有效改善了光电流却限制了开路电压的提升. 在适合的电沉积时间下, 电沉积表面修饰可以同时改善光电流和光电压.  相似文献   
107.
本文用无压烧结法成功制备了高硬度的立方氧化锆陶瓷,研究了氧化锆陶瓷的物相,Vickers硬度,显微结构,相对密度等性能,主要分析了TiO2添加量对Zr0.8Ce0.2O2陶瓷硬度和相对密度的影响。结果表明:烧结助剂TiO2可以有效抑制陶瓷晶粒异常生长,加快气孔排除,促进氧化锆陶瓷烧结致密化,提高陶瓷硬度。最高维氏硬度为20.2 GPa,最高相对密度达到了99.8%。  相似文献   
108.
酞菁铁对MH/Ni电池内压的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
王芳  吴锋 《中国科学B辑》2004,34(1):28-32
研究了酞菁铁(FePc)对MH/Ni电池充电时内压的影响. 实验结果表明添加适量FePc的电池在充电以及过充电的时候具有比参比电池低得多的内压, 其中含1 mg FePc的AA型电池具有最低的内压升高速度和最好的充电效率以及耐过充能力.  相似文献   
109.
测定了278.15~318.15 K(间隔10 K)下葡萄糖+HCl+水三元体系的密度, 计算了葡萄糖在盐酸(浓度0.2~2.1 mol•kg–1)中的表观摩尔体积VΦ,G、标准偏摩尔体积V0Φ,G、葡萄糖-HCl在水中的体积对相互作用参数VEG和标准偏摩尔膨胀系数(∂V0Φ,G/∂T)p. 结果表明: (1)葡萄糖在盐酸中的表观摩尔体积随葡萄糖和HCl的浓度的增加而线性增大; (2) V0Φ,G随HCl的质量摩尔浓度的增加而线性增大; (3)葡萄糖与HCl在水溶液中的体积相互作用参数VEG>0, 但数值对温度变化不甚敏感; (4)葡萄糖在水和盐酸中的V0Φ,G值随实验温度的变化关系均可表示为: V0Φ,Ga0a1(T-273.15 K) 2/3; (5) (∂V0Φ,G/∂T)p为正值且随温度的升高而减小; 在一定温度下, 其值随HCl浓度的增加而稍稍减小. 糖的水化程度随温度的升高和HCl的浓度的增加而减小. 用结构相互作用模型对葡萄糖与HCl之间的体积相互作用进行了解释.  相似文献   
110.
中心直裂纹平台巴西圆盘复合型动态断裂实验研究   总被引:2,自引:0,他引:2  
汪坤  王启智 《实验力学》2008,23(5):417-426
制作了中心直裂纹平台巴西圆盘(cracked straight through flattened Brazilian disc-CSTFBD)试样,利用分离式霍普金森压杆(split Hopkinson pressure bar-SHPB)加载,进行了岩石纯Ⅰ型和复合型(Ⅰ+Ⅱ型)动态断裂实验。由于加载角(载荷方向与裂纹线的夹角)在制作试样时已经通过裂纹线与试样平台的位置关系确定,因此在实验中可以方便而准确地实施加栽。比较了纯Ⅰ型加载和复合型加载下压杆上记录的入射波、反射波和透射波的波形。采用实验与数值相结合的方法,将实验得到的动态载荷输入有限元程序,得到了纯Ⅰ型试样的动态断裂韧度和复合型试样的两种动态应力强度因子的时间历程。计算了加载角为15°的试样应力强度因子的复合比(KI(t)/KⅡ(t)),此计算值与文献结果吻合较好,验证了实验方法的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号