首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44267篇
  免费   4323篇
  国内免费   1903篇
化学   3094篇
晶体学   68篇
力学   606篇
综合类   154篇
数学   89篇
物理学   8927篇
无线电   37555篇
  2024年   271篇
  2023年   991篇
  2022年   1222篇
  2021年   1428篇
  2020年   950篇
  2019年   1240篇
  2018年   553篇
  2017年   1103篇
  2016年   1268篇
  2015年   1502篇
  2014年   2944篇
  2013年   2169篇
  2012年   2743篇
  2011年   2704篇
  2010年   2403篇
  2009年   2761篇
  2008年   2897篇
  2007年   2440篇
  2006年   2099篇
  2005年   1994篇
  2004年   2004篇
  2003年   1836篇
  2002年   1472篇
  2001年   1232篇
  2000年   999篇
  1999年   988篇
  1998年   911篇
  1997年   890篇
  1996年   826篇
  1995年   706篇
  1994年   575篇
  1993年   465篇
  1992年   473篇
  1991年   439篇
  1990年   460篇
  1989年   436篇
  1988年   31篇
  1987年   31篇
  1986年   14篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
提出了一种利用电光调制器的非线性效应实现光电振荡器倍频输出的方法,通过在光电振荡环路中引入微波分频器,使得利用低频率的电光调制器有可能产生高频率的微波倍频信号输出,从而降低了振荡频率对调制器工作频率的要求。理论和实验研究表明,在微波信号输入功率较低时,调制器将引入较大的附加噪声,会严重恶化光电振荡器输出的倍频微波信号的相位噪声。通过在振荡反馈环路中增加一个微波放大器,减小附加噪声,能够极大地改善倍频信号的相位噪声。当环路光纤为1km时,产生的9GHz倍频信号相位噪声在10kHz频率偏移时达到-104dBc/Hz,比典型光电振荡环路恶化了6dB,同时,保持了较高的输出功率。实验结果与理论分析基本一致,证明了该倍频输出光电振荡器的可行性。  相似文献   
992.
在全正色散(ANDi)系统中,报道了最高为21阶的被动谐波锁模(HML)掺Yb光纤激光器。利用级联长周期光纤光栅(C-LPFG)作为全光纤结构的光谱滤波器,以非线性偏振演化(NPE)效应作为锁模机理,得到了重复频率可调谐的被动谐波锁模掺Yb激光输出,实现输出脉冲重复频率1.544~32.42MHz的可调谐。并进一步论证了谐波阶次的提高不仅与抽运功率有关,而且与光纤的长度有关。  相似文献   
993.
在传统双目立体视觉传感器的基础上,对基于平面镜成像的单摄像机立体视觉传感器进行了研究。在电荷耦合器件(CCD)摄像机前放置一平面反射镜,通过对目标物体和其虚像进行拍摄,得到一幅具有视差的图像,该图像相当于摄像机和其在平面镜中的虚拟摄像机从不同角度对目标物体进行拍摄,具有双目立体视觉的功能。建立了单摄像机立体视觉传感器数学模型,分析了参数对单摄像机立体视觉传感器的视场范围和测量精度的影响,设计了传感器参数尺寸,进行了相关实验验证。实验结果表明,该测量方案方便有效,结构简单,调节方便,尤其适合近距离高精度测量。  相似文献   
994.
设计和制作了一种基于单模多模细芯单模光纤马赫曾德尔(Mach-Zehnder)干涉仪结构,可同时测量折射率和温度的传感器。该传感器中,多模光纤和细芯单模熔接点充当光耦合器。导入光纤中传输的光经多模光纤后在细芯光纤的纤芯和包层中激发出纤芯模和包层模,不同模式光在细芯光纤中传输时将产生光程差,再经细芯单模熔接点耦合成为导出光纤的纤芯模而干涉。传感器透射光谱随着环境折射率和温度的变化发生漂移,通过监测不同级次的干涉谷可实现折射率和温度的同时测量。通过对传感器的透射光谱进行傅里叶变换分析可知该透射光谱主要由LP01模和LP16模干涉形成。该传感器透射光谱中1535nm附近干涉谷的折射率和温度响应灵敏度的理论值分别为-55.90nm/RIU和0.0501nm/℃(其中RIU为折射率单位);1545nm附近干涉谷的折射率和温度响应灵敏度的理论值分别为-56.26nm/RIU和0.0505nm/℃。在折射率和温度的变化范围分别为1.3449~1.3972和20℃~90℃的环境中对传感器的响应特性进行实验研究,结果表明:透射光谱中1535nm附近干涉谷的折射率和温度响应灵敏度分别为-53.03nm/RIU和0.0465nm/℃;1545nm附近干涉谷的折射率和温度响应灵敏度分别为-54.24nm/RIU和0.0542nm/℃。理论分析与实验结果相一致。该传感器在生物医学领域有较好的应用前景。  相似文献   
995.
静电电压表对测量交直流高压有着非常重要的作用。为了实现高电压静电电压表的精确测量,提出并制备了一种采用法布里珀罗(FP)腔干涉原理的静电电压传感器。所设计的传感器电极与高压电极构成一组静电电压测量电极,此传感器的FP腔由光纤准直器和外侧镀铝的聚酯膜构成,当在高压电极施加载荷时,聚酯膜与高压电极之间产生均匀电场,在电场力作用下聚酯膜产生形变,从而改变FP腔的腔长,造成FP传感器的输出光谱偏移,采用相位解调法获得高压电极上施加的载荷,实现电压的静电测量。实验结果表明:可实现5~16kV直流高压和交流高压有效值的测量,5~10kV范围测量精度为1.21%,10~16kV的测量精度为0.61%。此传感器满足高电压的测量要求。  相似文献   
996.
为了实现矢量传感器在圆阵阵型下的应用,文中提出了一种适合于声矢量圆阵的目标方位估计算法。该算法首先将声矢量圆阵阵元域信号分解为一系列相互正交的相位模态,在相位模态域构造声压和质点振速的互协方差矩阵,然后进行MUSIC方位估计.理论分析和仿真结果表明,文中算法比相同阵型的声压阵MUSIC方位估计算法具有更好的噪声抑制能力、方位估计性能以及多目标分辨能力,试验结果也表明本文算法具有更好的噪声抑制能力以及更好的目标方位估计性能。该算法实现了声压和质点振速的相干处理,充分利用了声矢量传感器的平均声强抗噪原理,具有较强的抗各向同性噪声能力,并可以将子空间类DOA(Direction of Arrival)估计算法和相位模态域阵列信号处理技术有机结合起来,实现了声矢量传感器在圆阵阵型条件下的高分辨DOA估计。  相似文献   
997.
为实现对低频振动信号的准确测量,设计了一种新型的双光纤光栅振动传感器.首先,理论分析了传感器的灵敏度和谐振频率.其次,使用ANSYS数值模拟软件分析了传感器的灵敏度和谐振特性.最后,根据分析结果设计了光纤Brgg光栅振动传感器,并通过实验研究了传感器的幅频特性、线性响应、温度自补偿特性和抗横向干扰特性.实验结果表明:传感器在10~130Hz范围内加速度灵敏度为231.48pm/g,线性度为99.98%;-20~60℃范围内,具有良好的温度自补偿能力;同时,该传感器具有较强抗横向干扰能力,横向引入误差小于3.47%.  相似文献   
998.
以变系数的耦合非线性薛定谔方程作为光脉冲传输的理论模型,考虑了三阶色散、自频移效应、自陡峭效应和五阶非线性效应,采用对称分步傅里叶方法,数值模拟了矢量组合孤波在综合管理的双折射光纤中的传输,研究了矢量组合孤波中相邻孤子间的相互作用,并且讨论了在加入噪声干扰、功率微扰和相位微扰情况下矢量组合孤波的传输稳定性。模拟结果显示:在一定条件下,矢量组合孤波中相邻两孤子几乎不发生相互作用,能够无畸变传输;并且在有限干扰情况下,矢量组合孤波具有良好的传输稳定性和抗干扰性。  相似文献   
999.
将无线传感器网络协同感知方法,应用于高速铁路固定设施状态监测,具有诸多优势,而协同感知数据的处理方法尤为关键。数据融合方法是协同感知方法在数据处理层面的理想选择。在分布式融合场景下,改进的动态误差平方求权系数法,可以充分利用无线节点的存储能力,使得数据波动性减小、一致性增强;在集中式融合场景下,将求取权系数的相关矩阵法从标量推广至多维向量,使得多维向量数据的融合方法得到丰富。仿真实验表明,改进方法下数据准确性、稳定性均优于原有算法。同时,分析比较了选取不同距离函数指数对多维向量相关矩阵法的影响。  相似文献   
1000.
张婷曼  王庆 《应用声学》2014,22(7):2216-2218
针对传统的图像采集和处理设备体积庞大、昂贵价格和灵活性差等问题,提出了一种基于云平台的和嵌入式图像处理系统设计方案;在系统硬件设计中,采用MT9M001C12STM图像传感器代替传统的CCD来采集图像数据,采用云计算嵌入式设备作为前端数据处理平台;在系统软件设计中,主要设计了硬件设备的初始化和为用户提供操作硬件设备的接口以及将由驱动采集到的数据进行处理和转化成规定格式,对PC机发起通信,传输数据;最终实现嵌入式系统的采集、处理、传输图像数据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号