首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25677篇
  免费   4040篇
  国内免费   3379篇
化学   3400篇
晶体学   263篇
力学   419篇
综合类   115篇
数学   141篇
物理学   9568篇
无线电   19190篇
  2024年   163篇
  2023年   542篇
  2022年   558篇
  2021年   704篇
  2020年   447篇
  2019年   627篇
  2018年   298篇
  2017年   499篇
  2016年   544篇
  2015年   729篇
  2014年   1484篇
  2013年   1089篇
  2012年   1391篇
  2011年   1396篇
  2010年   1217篇
  2009年   1506篇
  2008年   1828篇
  2007年   1504篇
  2006年   1599篇
  2005年   1685篇
  2004年   1723篇
  2003年   1683篇
  2002年   1407篇
  2001年   1272篇
  2000年   940篇
  1999年   723篇
  1998年   674篇
  1997年   748篇
  1996年   697篇
  1995年   616篇
  1994年   560篇
  1993年   424篇
  1992年   430篇
  1991年   405篇
  1990年   384篇
  1989年   368篇
  1988年   87篇
  1987年   51篇
  1986年   24篇
  1985年   12篇
  1984年   6篇
  1983年   14篇
  1982年   15篇
  1981年   16篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1975年   2篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
931.
"利用由无乳化剂的乳液聚合法和水浮法联用技术合成得到的有序排列的聚甲基丙烯酸甲酯(PMMA)微球为硬模板,以硝酸镁为镁源,并采用硝酸镁-柠檬酸-乙醇混合溶液浸渍PMMA微球后经干燥以及先后在300 ℃恒温灼烧3 h和500 ℃恒温灼烧5 h,制备出具有有序纳米孔道结构的MgO粒子.应用X射线衍射、高分辨扫描电子显微镜、透射电子显微镜/选区电子衍射以及N2吸附-脱附法等技术表征了PMMA和MgO样品的物理化学性质.结果表明,所得PMMA微球颗粒较为均匀,粒径约为284 nm,且排列规整有序.由PMMA硬模板  相似文献   
932.
933.
胡慧慧  曾令真  李哲  朱天宝  汪骋 《催化学报》2021,42(8):1345-1351
氢气析出反应的分子催化剂因能够将其整合到用于光催化水分解的光捕集复合物中而受到广泛关注.研究者期望通过构建吸光网络,提高分子催化剂的光催化产氢效能.本文报道了以[(TCPP)Pt][TCPP=meso-四(4-羧基苯基)卟啉]络合物作为光催化产氢的分子催化剂.采用氯冉酸(CA)作为电子牺牲剂可以很好地稳定光催化剂,使CA被氧化为[CA-H·]自由基.当使用三乙醇胺作为电子牺牲剂时,[(TCPP)Pt]分解形成Pt纳米颗粒.电化学循环伏安实验结果表明,光催化产氢的第一步是质子偶联电子转移,以获得[(TCPP)Pt+H]0.然而,第二个电子转移-1.02 V的氧化还原电位不随添加三氟乙酸而位移,表明该电子转移未与质子转移耦合,得到[(TCPP)Pt+H]-.此外,第二次电子转移的峰值处产生催化波,表明氢气是由[(TCPP)Pt+H]-的质子化生成,然后再生[(TCPP)Pt]并释放氢气.密度泛函理论计算结果表明,[(TCPP)Pt]分子催化剂光催化产氢的机理可能先经过质子耦合电子转移反应,形成[(TCPP)Pt]-NH,然后依次经过电子注入和质子化形成[(TCPP)Pt-H]-NH中间体,最终释放H2.由于整个催化循环过程涉及多个电子的注入,光捕获网络的引入有助于提供多个光电子.因此,本文通过将[(TCPP)Pt]掺杂生长到主要由[(TCPP)Zn]构筑的金属有机框架中,构筑了与分子催化剂连接的光捕获网络,从而将其活性提高了约830倍.纳秒瞬态吸收光谱和时间分辨的磷光光谱表明,向[(TCPP)Pt]均相溶液中加入氯冉酸会因电荷转移而缩短3[(TCPP)Pt]*寿命.同样现象在金属有机框架体系中也被观察到.然而,在磷光猝灭后,瞬态吸收光谱观察到均相溶液中[(TCPP)Pt+H]0及[CA-H·]自由基信号迅速衰减,在微秒时间尺度上衰减为0,表明大部分还原的[(TCPP)Pt+H]0迅速与氧化后的[CA-H·]复合,限制了光催化氢气析出的光量子效率.然而,在金属有机框架体系中,磷光猝灭后纳秒瞬态吸收光谱在较长时间尺度观察到残留吸收带,表明随后消耗CA,向反应体系中注入电子,推动了反应的完成.本文研究了能量转移对光催化H2析出的影响,并强调了光捕获网络在多电子注入中的重要性.  相似文献   
934.
染料敏化光电化学电池(DSPECs)是构建人工光合作用体系的潜在方式,其优势在于可通过优化染料结构来拓展可见光吸收范围,从根本上提高太阳能利用效率.染料敏化光阳极在受激发产生电荷分离之后,激发电子注入TiO2半导体导带,由于其导带位置比传统的可见光半导体,如BiVO4和Fe3O4等相比较负,因此理论上可以在较小的偏压下取得较大的光电转换效率,也更有利于和光阴极相耦合实现无偏压分解水.电荷传输动力学研究表明,注入到TiO2导带的电子向氧化态光敏剂和催化剂的回传是造成体系能量损失的主要原因,集中体现在光电流密度和效率的降低.目前,已经报道了多种手段来减少DSPECs光阳极表面的电子回传,包括使用带有长烷基链的锚定基团对水氧化催化剂进行修饰,在半导体表面引入电子中介体以及使用核-壳结构的基底等.其中,SnO2/TiO2基底被广泛应用在染料敏化光阳极中,这种基底可以提高光生电子的注入效率,同时两种金属氧化物之间的异质结有效抑制了电子回传,从而提高了DSPECs的光电活性.然而,核-壳结构基底需要使用原子层沉积技术来制备,所以操作相对复杂.本文基于Ru-bda(bda=2,2'-联吡啶-6,6'-二羧酸)结构的分子水氧化催化剂和带有磷酸修饰基团的三联吡啶钌通过共吸附的方式制备染料敏化光阳极,在不使用核-壳结构基底的情况下,利用吡啶衍生物对TiO2电极表面的修饰来减少电子回传.本文利用一系列吡啶衍生物作修饰负载在TiO2光阳极上(TiO2|RuP,1;RuP=Ru(4,4'-(PO3H2)2-2,2'-联吡啶)(2,2'-联吡啶)2;1=Ru(bda)(L)2,bda=2,2'-联吡啶-6,6'-二羧酸,L=(10-吡啶-4-基氧基)癸基)膦酸.在100 mW/cm2的白光照射下(λ>400 nm),TiO2|RuP,1,P1(P1=4-羟基吡啶)光阳极在0.4 V(vs.NHE)的外加偏压下获得了1 mA/cm2的光电流密度,其光电流比未修饰吡啶的光阳极增加了42%.同时,其入射光子-电流转化效率在470 nm波长的单色光光照下达到最大,为13.6%.经过吡啶衍生物所修饰的光阳极光电性能和文献中利用核-壳结构基底所制备的类似光阳极性能相当,且光电流密度随吡啶对位取代基供电性能的增强而增大.瞬态吸收光谱和电化学阻抗谱测试表明,吡啶吸附在光阳极上能有效地抑制界面上的电子回传,延长电荷分离寿命,是光电流增加的根本原因,这也表明有机小分子修饰是提高染料敏化光阳极性能的简单、有效的策略.  相似文献   
935.
光电化学分解水可将太阳能转换为绿色的氢能,为目前的能源危机和环境问题提供了一种理想的解决方案.在分解水反应中,涉及四空穴过程的产氧半反应是制约性能的关键步骤,往往需要在半导体表面沉积电催化剂以加速产氧反应动力学.因此,全面理解电催化剂在光电化学分解水体系中的作用至关重要.在目前的产氧电催化剂中,过渡金属羟基氧化物电催化剂(MOOH,M=Fe,Co,Ni)因其环保、廉价、高效以及稳定的特性,已被广泛用于半导体光阳极分解水器件中.而且,MOOH可用简单的电沉积方法沉积在光电极表面,易于大面积制备.然而,电沉积法制备的MOOH具有复杂的结构,对其作用机制的全面理解更加困难.因此,本文以电沉积MOOH修饰的硅基光阳极(n+p-Si/SiOx/Fe/FeOx/MOOH)作为模型,研究了不同电催化剂对硅光阳极光电化学产氧性能的影响.实验发现电催化剂的界面优化在电催化剂修饰的光电极中发挥着重要作用,这是因为优化的界面可以提升界面电荷传输,提供更多的催化反应活性位点以及更高的本征催化活性,从而更有利于光解水性能的提升.该项研究揭示了电催化剂在光解水器件中的作用,并为今后高效光解水器件的设计提供了一定指导.首先在多晶n+p-Si基底上热蒸镀了一层30 nm的金属Fe膜,并通过电化学活化将Fe膜表面转换为FeOx得到Fe/FeOx(记作aFe)界面层,然后利用电沉积方法制备MOOH表面修饰层,最终得到n+p-Si/SiOx/aFe:MOOH光阳极.X射线光电子能谱、拉曼光谱以及扫描电子显微镜表面元素成像的表征结果均证实电极表面由于界面层金属Fe元素的掺杂而形成了Fe1-xNixOOH.在模拟太阳光下用于光解水产氧时,n+p-Si/SiOx/aFe:NiOOH电极的起始电位为~1.01 VRHE(相对于可逆氢电极的电势),在1.23 VRHE下的光电流为38.82 mA cm-2,显著优于n+p-Si/SiOx/aFe、n+p-Si/SiOx/aFe:FeOOH以及n+p-Si/SiOx/aFe:CoOOH三个对比样品,且其稳定性达到75 h.另外,我们发现n+p-Si/SiOx/aFe:MOOH电极的光电化学产氧性能均显著高于n+p-Si/SiOx/aFe电极,且p++-Si/SiOx/aFe:MOOH的电催化产氧性能也高于p++-Si/SiOx/MOOH,不仅证明了aFe界面层对Si与MOOH层之间的界面接触作用的有效调控,而且表明双电催化剂体系(aFe:MOOH)的电催化产氧活性高于单电催化剂(MOOH).热力学分析表明,n+p-Si/SiOx/aFe:MOOH光阳极的光电压大小与其光解水产氧性能并不一致,从而排除了热力学因素对性能的关键影响.进一步从塔菲尔斜率、电化学活性表面积和电化学阻抗谱对各电极的动力学进行了分析,证明了动力学因素在上述光阳极产氧性能中的主导作用.同时发现,由于aFe:NiOOH双电催化剂具有更高的本征电催化产氧性能,提供了更多的表面活性位点以及更有效地促进了光生载流子的传输,对动力学的提升效果更显著,从而使n+p-Si/SiOx/aFe:NiOOH光阳极表现出最高的光解水产氧性能.  相似文献   
936.
作为一种非金属聚合半导体,石墨相氮化碳(g-C3N4)具有特殊的能带结构、可见光响应能力以及优良的物理化学性质以及生产成本低等特点,因而已成为目前光催化领域的研究热点.然而,由于g-C3N4被光激发的电子与空穴极易复合,导致g-C3N4材料的光催化性能并不理想.而助剂修饰是实现光生载流子有效分离以提高光催化活性的有效途径.众所周知,贵金属Pt可以作为光催化产氢的反应位点,但高昂的成本限制了它的实际应用.所以,开发高效的非贵金属助剂很有必要.近年来,NiS作为优良的电子助剂在光催化领域受到广泛关注.大量研究表明,NiS可以作为g-C3N4的产氢活性位点用于提高其光催化产氢性能.NiS助剂主要是通过水热、煅烧和液相沉淀的方法修饰在g-C3N4的表面上.相较而言,助剂的光沉积方法具有一些独特的优势,例如节能、环保、简易并且能够实现其原位牢固地沉积在光催化剂的表面.然而g-C3N4光生电子和空穴强还原和氧化能力容易导致像Ni^2+的还原和S^2-的氧化等副反应发生,因此NiS助剂很难光沉积在g-C3N4材料表面.本文采用硫调控的光沉积法成功合成了NiS/g-C3N4光催化材料,该法利用g-C3N4在光照条件下产生的光生电子结合S以及Ni^2+生成NiS,然后原位沉积在g-C3N4表面.由于E0(S/NiS)(0.096 V)比E0(Ni^2+/Ni)(-0.23 V)更正,所以NiS优先原位沉积在g-C3N4表面.因此,硫调控的光沉积法促进了NiS的生成,并抑制了金属Ni等副反应的形成.通过X射线光电子能谱分析NiS/g-C3N4的表面化学态,表明该方法能成功地将NiS修饰在g-C3N4的表面,这也得到透射电镜和高分辨透射电镜结果的证实.光催化产氢的结果表明,NiS/g-C3N4光催化剂实现了良好的光催化性能,其最优产氢速率(244μmol h^?1 g^?1)接近于1 wt%Pt/g-C3N4(316μmol h^?1 g^?1).这是因为硫调控的光沉积法实现NiS助剂在g-C3N4表面的修饰,从而促进光生电子与空穴的有效分离,进而提高光催化制氢效率.此外,在该方法中,NiS的形成通常在g-C3N4光生电子的表面传输位点上,因此也能够使NiS提供更多的活性位点以提高界面产氢催化反应速率.电化学表征结果也进一步证明NiS/g-C3N4光催化剂加快了电子与空穴的分离和转移.更重要的是,这种简易且通用的方法还可以实现CoSx,CuSx,AgSx对g-C3N4的助剂修饰,并且都提高了g-C3N4的光催化产氢性能,表明该方法具有一定的普适性,为高效光催化材料的合成提供了新的思路.  相似文献   
937.
938.
采用传统的熔融法制备了Er~(3+)掺杂的新型铋酸盐玻璃(Li_2O-SrO-ZnO-Bi_2O_3,LSZB),并对其光谱性质进行了表征,分析了玻璃的拉曼光谱、吸收光谱、荧光光谱,利用Judd-Ofelt理论研究了其荧光特性。LSZB玻璃样品中Er~(3+)的~4I_(13/2)→~4I_(15/2)跃迁发射峰位于1.53 μm处,半高宽约为78 nm。样品中Er~(3+)的~4I_(13/2)能级寿命为2.848 ms,量子效率为99.93%,受激发射截面达到9.76×10~(-21)cm~2。以上结果显示,Er~(3+)掺杂LSZB玻璃有良好的光谱特性。  相似文献   
939.
以LaNiO_3纳米颗粒为基质,在水热法制备CdS的过程中引入Mn~(2+)离子,原位合成直接Z型LaNiO_3/Mn_(0.2)Cd_(0.8)S异质结光催化剂。分别采用场发射扫描电镜、X射线衍射、X射线光电子能谱、紫外可见漫反射光谱、氮气吸附-脱附测试以及电化学测试等分析方法对制备的催化剂进行表征。在光解水产氢测试中,LaNiO_3/Mn_(0.2)Cd_(0.8)S异质结光催化剂在5 h的H_2产量达到1 190.3μmol,相较于CdS和Mn_(0.2)Cd_(0.8)S,其H_2产量分别提高了 25倍和10倍。荧光和电化学实验证实,Mn~(2+)的引入能够有效地促进光生载流子的分离,同时LaNiO_3/Mn_(0.2)Cd_(0.8)S之间异质结的构筑能有效地促进光生载流子在界面间的迁移、分离,从而促进其光解水产氢效率和稳定性的提高。结合一系列表征和活性测试结果提出直接Z型光解水反应机理,很好地阐述了其光解水产氢活性和稳定性的增强。  相似文献   
940.
《分析试验室》2021,40(6):703-707
以毒死蜱为模板分子,乙二醇二甲基丙烯酸酯为交联剂,对巯基苯胺为功能单体,Gr/CH3NH3PbI3纳米复合材料为载体,构建了MIP/ITO/Gr/CH3NH3Pb I3光电化学传感器。采用电流-时间法对传感器制备条件进行优化。在最佳实验条件下,峰电流与毒死蜱浓度在1.0~200 nmol/L范围内呈线性关系,相关系数R~2=0.9962,检测限为0.1 nmol/L。该传感器用于蔬菜样品中毒死蜱的检测,回收率在96.0%~107.2%之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号