首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7766篇
  免费   663篇
  国内免费   618篇
化学   3560篇
晶体学   57篇
力学   300篇
综合类   33篇
数学   428篇
物理学   1503篇
无线电   3166篇
  2024年   24篇
  2023年   479篇
  2022年   169篇
  2021年   329篇
  2020年   250篇
  2019年   246篇
  2018年   189篇
  2017年   393篇
  2016年   483篇
  2015年   390篇
  2014年   619篇
  2013年   555篇
  2012年   531篇
  2011年   484篇
  2010年   380篇
  2009年   413篇
  2008年   373篇
  2007年   421篇
  2006年   338篇
  2005年   290篇
  2004年   272篇
  2003年   182篇
  2002年   166篇
  2001年   135篇
  2000年   114篇
  1999年   118篇
  1998年   92篇
  1997年   93篇
  1996年   84篇
  1995年   65篇
  1994年   49篇
  1993年   57篇
  1992年   36篇
  1991年   37篇
  1990年   28篇
  1989年   20篇
  1988年   37篇
  1987年   14篇
  1986年   10篇
  1985年   8篇
  1984年   15篇
  1982年   4篇
  1981年   12篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
排序方式: 共有9047条查询结果,搜索用时 296 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
3.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
4.
We report a simple processing method to simultaneously improve the efficiency and stability of organic solar cells (OSCs). Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxy-thiophene (PEDOT:PSS), widely used as hole transport layer (HTL) in OSCs, tends to accelerate the degradation of devices because of its hygroscopic and acidic properties. In this regard, we have modified PEDOT:PSS to reduce its hygroscopic and acidic properties through a condensation reaction between PEDOT:PSS and poly(ethylene glycol) methyl ether (PEGME) in order to improve the efficiency and stability of OSCs. As a result, the power conversion efficiency (PCE) increased by 21%, from 2.57% up to 3.11%. A better energy level alignment by the reduced work function of the modified PEDOT:PSS with a highest occupied molecular orbital (HOMO) level of poly(3-hexylthiophene-2,5-diyl) (P3HT) is considered the origin of the improved the efficiency. The half-life of OSCs with PEDOT:PSS modified with PEGME buffer layer also increased up to 3.5 times compared to that of devices with pristine PEDOT:PSS buffer layer.  相似文献   
5.
The top illuminated organic photodetectors (OPDs) with a Dielectric/Metal/Dielectric (DMD) transparent anode are fabricated. The transparent electrode is composed of molybdenum trioxide (MoO3)/silver (Ag)/MoO3 layers and zinc oxide (ZnO)/aluminum (Al) is used for bottom cathode. The optimized DMD electrode has an optical transmittance of 85.7% at the wavelength of 546 nm and sheet resistance of ∼6 Ω/sq. The fabricated OPDs exhibit a high detectivity and wide range linearity.  相似文献   
6.
We investigated the resistive switching characteristics of a polystyrene:ZnO–graphene quantum dots system and its potential application in a one diode-one resistor architecture of an organic memory cell. The log–log IV plot and the temperature-variable IV measurements revealed that the switching mechanism in a low-current state is closely related to thermally activated transport. The turn-on process was induced by a space-charge-limited current mechanism resulted from the ZnO–graphene quantum dots acting as charge trap sites, and charge transfer through filamentary path. The memory device with a diode presented a ∼103 ION/IOFF ratio, stable endurance cycles (102 cycles) and retention times (104 s), and uniform cell-to-cell switching. The one diode-one resistor architecture can effectively reduce cross-talk issue and realize a cross bar array as large as ∼3 kbit in the readout margin estimation. Furthermore, a specific word was encoded using the standard ASCII character code.  相似文献   
7.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
8.
We report on conductivity and optical property of three different types of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films [pristine PH1000 film (PH1000-p), with 5 wt.% ethylene glycol additive (PH1000-EG) and with sulfuric acid post-treatment (PH1000-SA)] before and after polyethylenimine (PEI) treatment. The PEI is found to decrease the conductivity of all the PEDOT:PSS films. The processing solvent of 2-methoxyethanol is found to significantly enhance the conductivity of PH1000-p from 1.1 up to 744 S/cm while the processing solvent of isopropanol or water does not change the conductivity of PH1000-p much. As for the optical properties, the PEI treatment slightly changes the transmittance and reflectance of PH1000-p and PH1000-EG films, while the PEI leads to an substantial increase of the absorptance in the spectral region of 400–1100 nm of the PH1000-SA films. Though the optical property and conductivity of the three different types of PEDOT:PSS films vary with the PEI treatment, the treated PEDOT:PSS films exhibit similar low work function. We demonstrate solar cells with a simple device structure of glass/low-WF PEDOT:PSS/P3HT:ICBA/high-WF PEDOT:PSS cells that exhibit good performance with open-circuit voltage of 0.82 V and fill factor up to 0.62 under 100 mW/cm2 white light illumination.  相似文献   
9.
Light-emitting field effect transistors (LEFETs) are a class of organic optoelectronic device capable of simultaneously delivering the electrical switching characteristics of a transistor and the light emission of a diode. We report on the temperature dependence of the charge transport and emissive properties in a model organic heterostructure LEFET system from 300 K to 135 K. We study parameters such as carrier mobility, brightness, and external quantum efficiency (EQE), and observe clear thermally activated behaviour for transport and injection. Overall, the EQE increases with decreasing temperature and conversely the brightness decreases. These contrary effects can be explained by a higher recombination efficiency occurring at lower temperatures, and this insight delivers new knowledge concerning the optimisation of both the transport and emissive properties in LEFETs.  相似文献   
10.
A fluorene-centered perylene monoimide dimer, PMI-F-PMI with a partly non-coplanar configuration has been developed as a potential non-fullerene acceptor for organic solar cells (OSCs). The optimum power conversion efficiency (PCE) of the OSC based on PMI-F-PMI as acceptor and poly (3-hexyl thiophene) (P3HT) as donor is up to 2.30% after annealing at 150 °C. The PCE of 2.30% is the highest value for the OSCs based on P3HT donor and non-fullerene acceptor lies in that PMI-F-PMI’s lowest unoccupied molecular orbital (LUMO) level around −3.50 eV matches well with the donor P3HT to produce higher open-circuit voltage (Voc) of 0.98 V. Meanwhile, PMI-F-PMI makes remarkable contribution to devices’ light absorption as the maximum EQE (30%) of the devices is at 512 nm, same to the maximum absorption wavelength of PMI-F-PMI. The other favorable characteristics of PMI-F-PMI in bulk heterojunction (BHJ) active layers is proved through the photo current density measures, the relatively balanced electron–hole transport, and the smooth morphology with root mean square (RMS) value of 1.86 nm. For these advantages, PMI-F-PMI overwhelms its sister PMI-F and parent PMI as an acceptor in BHJ solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号