首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4895篇
  免费   293篇
  国内免费   485篇
化学   3683篇
晶体学   33篇
力学   116篇
综合类   9篇
数学   73篇
物理学   1053篇
无线电   706篇
  2024年   33篇
  2023年   337篇
  2022年   131篇
  2021年   171篇
  2020年   172篇
  2019年   172篇
  2018年   133篇
  2017年   157篇
  2016年   166篇
  2015年   167篇
  2014年   211篇
  2013年   310篇
  2012年   377篇
  2011年   293篇
  2010年   238篇
  2009年   287篇
  2008年   278篇
  2007年   286篇
  2006年   232篇
  2005年   192篇
  2004年   204篇
  2003年   149篇
  2002年   90篇
  2001年   96篇
  2000年   87篇
  1999年   104篇
  1998年   109篇
  1997年   79篇
  1996年   65篇
  1995年   51篇
  1994年   46篇
  1993年   47篇
  1992年   37篇
  1991年   36篇
  1990年   20篇
  1989年   19篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   8篇
  1979年   9篇
  1978年   1篇
  1975年   14篇
  1968年   1篇
排序方式: 共有5673条查询结果,搜索用时 10 毫秒
1.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   
2.
Textured surface is commonly used to enhance the efficiency of silicon solar cells by reducing the overall reflectance and improving the light scattering. In this study, a comparison between isotropic and anisotropic etching methods was investigated. The deep funnel shaped structures with high aspect ratio are proposed for better light trapping with low reflectance in crystalline silicon solar cells. The anisotropic metal assisted chemical etching (MACE) was used to form the funnel shaped structures with various aspect ratios. The funnel shaped structures showed an average reflectance of 14.75% while it was 15.77% for the pillar shaped structures. The average reflectance was further reduced to 9.49% using deep funnel shaped structures with an aspect ratio of 1:1.18. The deep funnel shaped structures with high aspect ratios can be employed for high performance of crystalline silicon solar cells.  相似文献   
3.
《Tetrahedron letters》2019,60(24):1582-1586
Rh(II)-catalyzed decomposition of certain cyclic α-diazocarbonyl compounds in the presence of cyclic ethers has been shown to give bicyclic ring expansion products. These are thought to arise from a [1,4]-alkyl shift toward the carbonyl oxygen atom and are in contrast with the recently observed spirocyclic products of a Stevens-type [1,2]-alkyl shift within the postulated oxonium ylide intermediate. Quantum chemical calculations performed at the B3LYP/6-31G* level of theory showed that the former reaction pathway (toward fused bicycles) is kinetically preferred.  相似文献   
4.
Generation of Technology-Independent Retargetable Analog Blocks   总被引:1,自引:0,他引:1  
This paper introduces a complete methodology for retargeting of analog cells to different sets of specifications. This methodology is technology-independent, thus allowing the migration, from one technology to another, of the circuit under retargeting. Careful integration of the device sizing and layout generation tasks via the incorporation of layout constraints during the sizing process allows to generate fully functional designs in a few minutes. The methodology is illustrated via the retargeting of a fully-differential Miller-compensated two-stage operational amplifier for a new set of specifications and two different technological processes.An erratum to this article can be found at  相似文献   
5.
ABSTRACT. The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. In this paper we examine the contribution of fully protected tropical marine reserves to fishery enhancement by modeling marine reserve‐fishery linkages. The consequences of reserve establishment on the long‐run equilibrium fish biomass and fishery catch levels are evaluated. In contrast to earlier models this study highlights the roles of both adult (and juvenile) fish migration and larval dispersal between the reserve and fishing grounds by employing a spawner‐recruit model. Uniform larval dispersal, uniform larval retention and complete larval retention combined with zero, moderate and high fish migration scenarios are analyzed in turn. The numerical simulations are based on Mombasa Marine National Park, Kenya, a fully protected coral reef marine reserve comprising approximately 30% of former fishing grounds. Simulation results suggest that the establishment of a fully protected marine reserve will always lead to an increase in total fish biomass. If the fishery is moderately to heavily exploited, total fishery catch will be greater with the reserve in all scenarios of fish and larval movement. If the fishery faces low levels of exploitation, catches can be optimized without a reserve but with controlled fishing effort. With high fish migration from the reserve, catches are optimized with the reserve. The optimal area of the marine reserve depends on the exploitation rate in the neighboring fishing grounds. For example, if exploitation is maintained at 40%, the ‘optimal’ reserve size would be 10%. If the rate increases to 50%, then the reserve needs to be 30% of the management area in order to maximize catches. However, even in lower exploitation fisheries (below 40%), a small reserve (up to 20%) provides significantly higher gains in fish biomass than losses in catch. Marine reserves are a valuable fisheries management tool. To achieve maximum fishery benefits they should be complemented by fishing effort controls.  相似文献   
6.
The usual tool for modelling bond ratings migration is a discrete, time‐homogeneous Markov chain. Such model assumes that all bonds are homogeneous with respect to their movement behaviour among rating categories and that the movement behaviour does not change over time. However, among recognized sources of heterogeneity in ratings migration is age of a bond (time elapsed since issuance). It has been observed that young bonds have a lower propensity to change ratings, and thus to default, than more seasoned bonds. The aim of this paper is to introduce a continuous, time‐non‐homogeneous model for bond ratings migration, which also incorporates a simple form of population heterogeneity. The specific form of heterogeneity postulated by the proposed model appears to be suitable for modelling the effect of age of a bond on its propensity to change ratings. This model, called a mover–stayer model, is an extension of a Markov chain. This paper derives the maximum likelihood estimators for the parameters of a continuous time mover–stayer model based on a sample of independent continuously monitored histories of the process, and develops the likelihood ratio statistic for discriminating between the Markov chain and the mover–stayer model. The methods are illustrated using a sample of rating histories of young corporate issuers. For these issuers the default probabilities predicted by the Markov chain and mover–stayer models are different. In particular for 1–4 years old bonds the mover–stayer model estimates substantially lower default probabilities from rating C than a Markov chain. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
Mo2Ni3Si/NiSi metal silicide composite coatings with a fine microstructure consisting of Mo2Ni3Si primary dendrites and the interdendritic Mo2Ni3Si/NiSi eutectics were fabricated on austenitic stainless steel AISI 321 by laser cladding process. Small amplitude reciprocating sliding wear resistance of the coatings is evaluated as functions of normal load and slip amplitude and the wear mechanisms were discussed based on worn surface morphology observations. Results showed that the Mo2Ni3Si/NiSi coatings have excellent small amplitude reciprocating sliding wear resistance.  相似文献   
8.
This paper provides an overview of recent research developments in the field of nanoelectronics with organic materials such as carbon nanotubes and DNA-templated nanowires. Carbon nanotubes and gold electrodes are chemically functionalized in order to contact carbon nanotubes by self-assembly. The transport properties of these nanotubes are dominated by charging effects and display clear Coulomb blockade behaviour. A different approach towards nanoscale electronics is based on the molecular recognition properties of biomolecules such as DNA. As an example, DNA is stretched between electrodes using a molecular combing technique. A two-step metallization procedure leads to the formation of highly conductive gold nanowires.  相似文献   
9.
We report on a single‐layer organic memory device made of poly(N‐vinylcarbazole) embedded between an Al electrode and ITO modified with Ag nanodots (Ag‐NDs). Devices exhibit high ON/OFF switching ratios of 104. This level of performance could be achieved by modifying the ITO electrodes with some Ag‐NDs that act as trapping sites, reducing the current in the OFF state. Temperature dependence of the electrical characteristics suggest that the current of the low‐resistance state can be attributed to Schottky charge tunnelling through low‐resistance pathways of Al particles in the polymer layer and that the high‐resistance state can be controlled by charge trapping by the Al particles and Ag‐NDs.  相似文献   
10.
A new type of bottom‐emission electroluminescent device is described in which a metal oxide is used as the electron‐injecting contact. The preparation of such a device is simple. It consists of the deposition of a thin layer of a metal oxide on top of an indium tin oxide covered glass substrate, followed by the solution processing of the light‐emitting layer and subsequently the deposition of a high‐workfunction (air‐stable) metal anode. This architecture allows for a low‐cost electroluminescent device because no rigorous encapsulation is required. Electroluminescence with a high brightness reaching 5700 cd m–2 is observed at voltages as low as 8 V, demonstrating the potential of this new approach to organic light‐emitting diode (OLED) devices. Unfortunately the device efficiency is rather low because of the high current density flowing through the device. We show that the device only operates after the insertion of an additional hole‐injection layer in between the light‐emitting polymer (LEP) and the metal anode. A simple model that explains the experimental results and provides avenues for further optimization of these devices is described. It is based on the idea that the barrier for electron injection is lowered by the formation of a space–charge field over the metal‐oxide–LEP interface due to the build up of holes in the LEP layer close to this interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号