首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   33篇
  国内免费   1篇
化学   202篇
物理学   2篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   11篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   12篇
  2014年   11篇
  2013年   21篇
  2012年   5篇
  2011年   15篇
  2010年   17篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   12篇
  2005年   11篇
  2004年   6篇
  2003年   9篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1989年   1篇
  1974年   1篇
排序方式: 共有204条查询结果,搜索用时 78 毫秒
71.
Despite great interests in using zwitterionic polymers for membrane surface modification to enhance antifouling properties, there lacks fundamental understanding of the relationship between polymer structure and water/salt separation properties. In this study, two series of zwitterionic polymers were prepared from sulfobetaine methacrylate and 2‐methacryloyloxyethyl phosphorylcholine. Both are crosslinked by poly(ethylene glycol) diacrylate (PEGDA). These copolymers were thoroughly characterized in terms of sol‐gel fraction, density, glass transition temperature, contact angle, water and salt transport properties, and pure‐gas permeability. Interestingly, the zwitterionic polymers exhibit water sorption and permeability similar to noncharged poly(ethylene glycol)‐based materials. These zwitterionic polymers exhibit lower NaCl diffusivity and permeability and thus higher water/NaCl selectivity than the non‐charged PEG‐based materials at similar water volume fractions, demonstrating their promise for membrane surface modification for desalination and wastewater treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1924–1934  相似文献   
72.
Chemical single‐electron reduction of 1‐mesityl‐2,3,4,5‐tetraphenylborole ( 3 ) gave a stable radical anion [CoCp*2][ 3 ] as shown in earlier investigations. Herein, we present the reaction of [CoCp*2][ 3 ] with the 2,2,6,6‐tetramethylpiperidine‐N‐oxyl radical (TEMPO), a common radical trap. Instead of radical recombination, the reaction proceeds through a redox pathway involving oxidation of the borole radical anion combined with reduction of TEMPO. This electron‐transfer process is accompanied by a deprotonation reaction of the cobaltocenium counterion by the base TEMPO? to give TEMPO‐H and a neutral cobalt(I) fulvene complex ( 7 ). The latter was not observed directly during the reaction, because it instantaneously reacts as a nucleophile attacking at the boron center of the in situ generated borole 3 to give the borate 6 . However, 7 was synthesized independently by deprotonation of [CoCp*2][PF6]. In addition, the obtained zwitterionic cobaltocenium borate 6 undergoes a photolytic rearrangement to form the borata‐alkene derivative 9 that thermally transforms to the chiral cobaltocenium borate 12 . Our investigations are based on spectroscopic evidence, X‐ray crystallography, elemental analysis, as well as DFT calculations.  相似文献   
73.
Abstract

Interaction of 3,4-(MeO)2-benzylideneacetone with [HO(CH2)3]3P (THPP) was studied in CD3OD by NMR to compare reactivity of a phenylpropanoid α,β-unsaturated ketone with a corresponding α,β-unsaturated aldehyde. In the presence of HCl, both the ketone and a related cinnamaldehyde first establish an equilibrium with the product formed by nucleophilic attack of the THPP at the C?O bond, [ArCH?CHCX(OD)PR3]+Cl?(X?H or CH3, Ar?Ph or 3,4-(MeO)2C6H3). The ketone salt then slowly transforms into [R3PCH(Ar)CH(D)C(O)CD3]+Cl?, the phosphonium product of nucleophilic attack of THPP at the C?C bond, whereas the final product from the aldehyde is the (α-ether)phosphonium chloride [ArCH?CHCH(OCD3)PR3]+Cl?. In aqueous media, in the absence of HCl, 4-HO-benzylideneacetone, which is similar to a lignin-type, α,β-unsaturated aldehyde model compound, interacts with THPP to afford a stable phosphonium zwitterion, in contrast to the previously studied aldehyde model, which forms dimeric, bisphosphonium products.  相似文献   
74.
Supramolecular nano‐assemblies that reduce nonspecific interactions with biological macromolecules, such as proteins, are of great importance for various biological applications. Recently, zwitterionic materials have been shown to reduce nonspecific interactions with biomolecules, owing both to their charge neutrality and their ability to form a strong hydration layer around zwitterions via electrostatic interactions. Here, new triazole‐based zwitterionic moieties are presented that are incorporated as the hydrophilic functionalities in facially amphiphilic dendrons. The amphiphilic zwitterionic dendrons spontaneously self‐assemble in aqueous solutions forming micelle‐type aggregates, which were confirmed by DLS, TEM, and fluorescence techniques. The structural and functional characteristics of the zwitterionic dendrons are also compared with the corresponding charge‐neutral PEG‐based dendrons and anionic carboxylate‐based dendrons. Surface‐charge measurements, temperature sensitivity and evaluation of interactions of these assemblies with proteins form the bases for these comparisons.  相似文献   
75.
Zwitterionic polymers are generally viewed as a new class of nonfouling materials. Unlike their poly(ethylene glycol) (PEG) counterparts, zwitterionic polymers have a broader chemical diversity and greater freedom for molecular design. In this Minireview, we highlight recent microbiological applications of zwitterionic polymers and their derivatives, with an emphasis on several unique molecular strategies to integrate antimicrobial and nonfouling properties. We will also discuss our insights into the bacterial nonfouling performance of zwitterionic polymers and one example of engineering zwitterionic polymer derivatives for antimicrobial wound‐dressing applications.  相似文献   
76.
The discovery of a novel aerobic oxidative intermolecular azide–zwitterion reaction catalyzed by an organocatalyst is presented. It is demonstrated that the merger of the Lewis base 1,8‐diazabicyclo[5.4.0]undec‐7‐ene and electron‐deficient olefins generates reactive zwitterion intermediates, which readily participate in cycloaddition reactions with an array of azides, thus providing facile entry to fully or highly substituted 1,2,3‐triazole frameworks. The reaction features an excellent substrate scope, and the products are obtained with high yields and excellent regioselectivities. It is demonstrated that some of these products can be transformed into pharmaceutically important agents. In addition to the experimental results, a detailed mechanistic survey is also provided, including MS studies rationalizing the origin of regioselective control.  相似文献   
77.
Reactions of HC(Me2pz)3 with Grignard reagents, dialkyl magnesium compounds and dimethylzinc are reported, together with a DFT study on some of the aspects of this chemistry. Reactions of HC(Me2pz)3 with MeMgX (X=Cl or Br) gave the half-sandwich zwitterionic compounds [Mg((Me)Tpmd)X] (X=Cl (2) or Br (3); (Me)Tpmd(-)=[C(Me2pz)3](-)). Addition of HCl to 2 gave the structurally characterised half-sandwich compound [Mg{HC(Me2pz)3}Cl2(thf)] (4). The zwitterionic sandwich compound [Mg(MeTpmd)2] (5) formed in low yields in the reaction of MeMgX with HC(Me2pz)3 but was readily prepared from HC(Me2pz)3 and either MgnBu2 or MgPh2. The structurally characterised compound 5 contains two "naked" sp3-hybridised carbanions fully separated from the dicationic metal centre. Only by using MgPh2 as starting material could the half-sandwich compound [Mg(MeTpmd)Ph(thf)] (6) be isolated. The zwitterionic sandwich compound 5 reacted with HOTf (OTf(-)=[O3SCF3](-)) to form the dication [Mg{HC(Me2pz)3}2]2+ (7(2+)), which was structurally characterised. Pulsed field gradient spin-echo (PGSE) diffusion NMR spectroscopy revealed both compounds to be intact in solution. In contrast to the magnesium counterparts, HC(Me2pz)3 reacted only slowly with ZnMe2 (and not at all with ZnPh2) to form the half-sandwich zwitterion [Zn(MeTpmd)Me] (8), which contains a cationic methylzinc moiety separated from a single sp3-hybridised carbanion. Density functional calculations on the zwitterions [M(MeTpmd)Me] and [M(MeTpmd)2] (M=Mg, Zn) revealed that the HOMO in each case is a (Me)Tpmd-based carbanion lone pair. The kappa 1C isomers of [M(MeTpmd)Me] were calculated to be considerably less stable than their kappa 3N-bound counterparts, with the largest gain in energy for Mg due to the greater ease of electron transfer from metal to the (Me)Tpmd apical carbon atom on formation of the zwitterion. Moreover, the computed M-C bond dissociation enthalpies of the kappa 1C isomers of [M(MeTpmd)Me] are considerably higher than expected by simple extrapolation from the corresponding computed H-C bond dissociation enthalpy.  相似文献   
78.
79.
80.
A new type of intermolecular rhodium(II)‐catalyzed [5+3] cycloaddition has been developed. This higher‐order cycloaddition between pyridinium zwitterion 1,5‐dipole equivalents and enol diazoacetates enables the formation of eight‐membered heterocyclic skeletons, which are otherwise difficult to construct. The optimized cycloaddition occurs efficiently under mild conditions with a wide range of pyridinium zwitterions and with high functional‐group tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号