全文获取类型
收费全文 | 846篇 |
免费 | 109篇 |
国内免费 | 93篇 |
专业分类
化学 | 151篇 |
晶体学 | 1篇 |
力学 | 47篇 |
综合类 | 14篇 |
数学 | 574篇 |
物理学 | 261篇 |
出版年
2023年 | 7篇 |
2022年 | 20篇 |
2021年 | 16篇 |
2020年 | 25篇 |
2019年 | 22篇 |
2018年 | 24篇 |
2017年 | 38篇 |
2016年 | 36篇 |
2015年 | 25篇 |
2014年 | 39篇 |
2013年 | 59篇 |
2012年 | 36篇 |
2011年 | 43篇 |
2010年 | 29篇 |
2009年 | 52篇 |
2008年 | 65篇 |
2007年 | 67篇 |
2006年 | 57篇 |
2005年 | 45篇 |
2004年 | 43篇 |
2003年 | 45篇 |
2002年 | 41篇 |
2001年 | 39篇 |
2000年 | 23篇 |
1999年 | 25篇 |
1998年 | 18篇 |
1997年 | 27篇 |
1996年 | 13篇 |
1995年 | 11篇 |
1994年 | 10篇 |
1993年 | 5篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1990年 | 4篇 |
1988年 | 4篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 5篇 |
1980年 | 1篇 |
1979年 | 5篇 |
1976年 | 1篇 |
1971年 | 2篇 |
排序方式: 共有1048条查询结果,搜索用时 15 毫秒
101.
采用水溶液均聚合方法,制备了阳离子型表面活性单体(2-丙烯酰胺基)乙基十四烷基二甲基溴化铵(AMC14AB)的均聚物,使用荧光探针法、表面张力测定及电导测定法,重点考察了均聚物P(AMC14AB)在水溶液中的胶束化行为与表面吸附现象.在水溶液中,均聚物P(AMC14AB)呈现单分子链胶束的聚集形态,具有零临界胶束浓度(CMC=0),从开始加入P(AMC14AB)起,水溶液中随即产生单分子链胶束,不存在Krafft温度.P(AMC14AB)在溶液表面也发生表面吸附,使水的表面张力下降,即P(AMC14AB)也具有表面活性;随着浓度增大,表面吸附量增大,水的表面张力持续下降;当表面吸附达到饱和时,表面张力一浓度曲线上出现突变点,该点应该定义为饱和的表面吸附浓度(SSAC),而不应该再称为临界胶束浓度.P(AMC14AB)单分子链胶束溶液对疏水有机物(甲苯)的增溶情况,明显不同于普通小分子表面活性剂十六烷基二甲基溴化铵(CTAB)的多分子胶束溶液,甲苯增溶量-P(AMC14AB)浓度的关系曲线上无突变点,而且对甲苯的增溶能力高于CTAB的多分子胶束溶液. 相似文献
102.
《Arabian Journal of Chemistry》2020,13(9):7115-7131
The impregnation of magnetite (Mt) nanoparticle (NPs) onto Musa acuminata peel (MApe), to form a novel magnetic combo (MApe-Mt) for the adsorption of anionic bromophenol blue (BPB) was studied. The SEM, EDX, BET, XRD, FTIR and TGA were used to characterize the adsorbents. The FTIR showed that the OH and CO groups were the major sites for BPB uptake onto the adsorbent materials. The average Mt crystalline size on MApe-Mt was 21.13 nm. SEM analysis revealed that Mt NPs were agglomerated on the surface of the MApe biosorbent, with an average Mt diameter of 25.97 nm. After Mt impregnation, a decrease in BET surface area (14.89 to 3.80 m2/g) and an increase in pore diameter (2.25–3.11 nm), pore volume (0.0052–0.01418 cm3/g) and pH point of zero charge (6.4–7.2) was obtained. The presence of Pb(II) ions in solution significantly decreased the uptake of BPB onto both MApe (66.1–43.8%) and MApe-Mt (80.3–59.1%), compared to other competing ions (Zn(II), Cd(II), Ni(II)) in the solution. Isotherm modeling showed that the Freundlich model best fitted the adsorption data (R2 > 0.994 and SSE < 0.0013). In addition, maximum monolayer uptake was enhanced from 6.04 to 8.12 mg/g after Mt impregnation. Kinetics were well described by the pseudo-first order and liquid film diffusion models. Thermodynamics revealed a physical, endothermic adsorption of BPB onto the adsorbents, with ΔHo values of 15.87–16.49 kJ/mol, corroborated by high desorption (over 90%) of BPB from the loaded materials. The viability of the prepared adsorbents was also revealed in its reusability for BPB uptake. 相似文献
103.
Dr. Mingzhe Chen Dr. Jin Xiao Dr. Weibo Hua Dr. Zhe Hu Dr. Wanlin Wang Dr. Qinfen Gu Prof. Yuxin Tang Prof. Shu-Lei Chou Prof. Hua-Kun Liu Prof. Shi-Xue Dou 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(29):12174-12181
Titanium-based polyanions have been intensively investigated for sodium-ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti-based cathodes of Na3Ti0.5V0.5(PO3)3N as a new cathode material for sodium ion batteries. Both the Ti3+/Ti4+ and V3+/V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near-zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron-based X-ray diffraction. First-principles calculations reveal its well-interconnected 3D Na diffusion pathways with low energy barriers, and the two-sodium-extracted intermediate NaTi0.5V0.5(PO3)3N is also a stable phase according to formation energy calculations. 相似文献
104.
105.
The relationship among intrinsic surface reaction constant (K) in 1-pK model, point of zero net charge (PZNC) and structural charge density (σst) for amphoteric solid with structural charges was established in order to investigate the effect of σst on pK. The theoretical analysis based on 1-pK model indicates that the independent PZNC of electrolyte concentration (c) exists for amphoteric solid with structural charges. A common intersection point (CIP) should appear on the acid-base titration curves at different c, and the pH at the CIP is pHPZNC. The pK can be expressed as pK=-pHPZNC log[(1 2αPZNC)/(1-2αPZNC)], where αPZNC≡σst/eNANs, in which e is the elementary charge, NA the Avogadro‘s constant and Ns the total density of surface sites. For solids without structural charges, pK=-pHPZNC. The pK values of hydrotalcite-like compounds (HTlc) with general formula of [Mg1-xFex(OH)2](Cl,OH)x were evaluated. With increasing x, the pK increases, which can be explained based on the affinity of metal cations for H^- or OH^- and the electrostatic interaction between charging surface and H^- or OH^-. 相似文献
106.
DongXiangLI WanGuoHOU ShuPingLI MingTuHAO GaoYongZHANG 《中国化学快报》2004,15(2):224-227
The relation of the isoelectric point (IEP) and the point of zero net charge (PZNC) of the hydrotalcite-like compounds was discussed. It was found that the IEP does not equal to the PZNC and the IEP is higher than the PZNC. The structural positive charges existing in the HTlc,which cause the difference between the IEP and the PZNC. The effects of the structural positive charges of the HTlc on its IEP and PZNC are the same as the specific adsorption of metal cations. 相似文献
107.
把无相移滤波技术引入了分析化学信号处理领域。其方法为:先将输入序列按顺序滤波,然后将所得结果逆转后反向通过滤波器,再将所得结果逆转后输出。通过对色谱信号的实验研究表明,与普通的数字滤波方法相比较,无相移滤波不但具有普通数字滤波的优点,而且不会产生滤波前后的相位偏移,具有良好的应用前景,尤其对于需要准确计算保留时间的场合,用此预处理方法非常适合。 相似文献
108.
Irene Zacharaki Christos Kontoyannis Alexis Lycourghiotis Christos Kordulis 《Colloids and surfaces. A, Physicochemical and engineering aspects》2008,324(1-3):208-216
Mesoporous anatase was prepared following sol–gel and using urea as template. The influence of calcination temperature on the phase stability, nanocrystal/aggregate size, pore size distribution and specific surface area as well as on the acid–base behavior in aqueous solutions was studied using X-ray diffraction, laser-Raman and diffuse reflectance spectroscopies, scanning electron microscopy and laser scattering as well as N2 adsorption–desorption isotherms and potentiometric mass titrations.The crystal structure was kept constant upon calcination over the whole temperature range, 200–500 °C. In this range anatase is constituted from primary nanocrystals. These are assembled into larger, rather spherical, clusters of about 30–40 nm and then into aggregates of various sizes (0.2–0.3 μm and 2–100 μm) with a distribution centered at about 12 μm. Increase of the calcination temperature caused an increase in the size of the primary nanocrystals from 8.1 nm at 200 °C to 17.1 nm at 500 °C, whereas calcination does not influence the morphology at micro-scale. Moreover, increase of the calcination temperature from 200 °C to 500 °C brings about a shift in the mean pore diameter from 47 nm to 91 nm accompanied by a decrease in the specific surface area and pore volume. The above effects were related with the aforementioned increase in the size of the primary nanocrystals. The value of pzc and the values of surface charge determined at various pH do not practically depend on the calcination temperature. The absence of pore space confinement effects was explained in terms of the structure and size of the interface development between the anatase surface and the electrolytic solution. 相似文献
109.
纳米碳纤维负载钯催化剂在Heck反应中的应用——载体相互作用的影响 总被引:1,自引:0,他引:1
使用多元醇还原法制备了均匀分散的钯纳米颗粒.将钯纳米颗粒负载于板式、鱼骨式和管式纳米碳纤维,得到稳定、可重复使用的非均相催化剂.实验结果表明,钯纳米胶粒同载体之间的电位差对钯在载体上的负载量、粒子大小以及Heck反应中钯的溶失量有很大的影响.在制备过程中,增加钯纳米胶粒同纳米碳纤维表面的电位差能够大大降低钯在Heck反应中的流失.催化剂的反应活性随钯粒子的增大而降低. 相似文献
110.
Juan de Torres Petru Ghenuche Satish Babu Moparthi Victor Grigoriev Jérôme Wenger 《Chemphyschem》2015,16(4):782-788
Zero‐mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero‐mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single‐molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor–acceptor fluorophore pairs that diffuse into aluminum zero‐mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single‐molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single‐molecule FRET at physiological concentrations. 相似文献