首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   67篇
  国内免费   25篇
化学   30篇
力学   195篇
综合类   6篇
数学   50篇
物理学   215篇
  2024年   1篇
  2023年   2篇
  2022年   11篇
  2021年   7篇
  2020年   11篇
  2019年   4篇
  2018年   6篇
  2017年   9篇
  2016年   18篇
  2015年   10篇
  2014年   10篇
  2013年   34篇
  2012年   20篇
  2011年   28篇
  2010年   38篇
  2009年   30篇
  2008年   25篇
  2007年   29篇
  2006年   30篇
  2005年   23篇
  2004年   25篇
  2003年   17篇
  2002年   16篇
  2001年   10篇
  2000年   18篇
  1999年   5篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
排序方式: 共有496条查询结果,搜索用时 15 毫秒
101.
在连续波DF/HF化学激光器主喷管收缩段采用气膜冷却方式,从3维离散小孔注入氦气射流以隔离壁面和主气流。通过对3种气膜孔排布方式下喷管内主气流状态进行数值模拟研究,分析氦气与主气流之间的相互作用,比较了不同方式下主气流氟原子冻结效率及壁面冷却效果。考虑到DF/HF化学激光器主喷管结构尺寸较小,采用适当间隔的单排圆孔注入是现实可行的,并有望达到较好的冷却保护效果,从而提高激光器运转效率。  相似文献   
102.
将Anderson的两振型三温度弛豫模型和严海星整理的弛豫数据相结合,采用2维守恒型方程组对按照最小长度喷管型面设计方法设计的、面积比分别为50和20的气动激光器喷管非平衡流场进行了数值仿真。小信号增益计算结果在每个计算点都和J. S. Vamos等人针对这两种喷管的小信号增益测量试验结果符合很好,解决了传统的准1维非平衡流分析方法不能很好地和试验结果相符的问题,对气动激光器喷管性能设计提供了更精确的评估方法。  相似文献   
103.
The purpose of this study was to compare non-uniform image quality caused by the anode heel effect between two radiographic systems using a circular step-wedge (CSW) phantom and the normalized mutual information (nMI) metric. Ten repeated radiographic images of the CSW and contrast-detail resolution (CDR) phantoms were acquired from two digital radiographic systems with 16- and 12-degree anode angles, respectively, using various kVp and mAs. To compare non-uniform image quality, the CDR phantom was physically rotated at different orientations, and the directional nMI metrics were calculated from the CSW images. The directional visible ratio (VR) metrics were calculated from the CDR images. Analysis of variance (ANOVA) was performed to understand whether the nMI metric significantly changed with kVp, mAs, and orientations with Bonferroni correction. Mann–Whitney’s U test was performed to compare the metrics between the two systems. Contrary to the VR metrics, the nMI metrics significantly changed with orientations in both radiographic systems. In addition, the system with the 12-degree anode angle exhibited less uniform image quality compared to the system with the 16-degree anode angle. A CSW phantom using the directional nMI metric can be significantly helpful to compare non-uniform image quality between two digital radiographic systems.  相似文献   
104.
The aerodynamic characteristics and distinctive features of the flow past hypersonic integral-layout flight vehicles with air-breathing engines intended for cruise flight in the atmosphere are experimentally investigated. The experiments were conducted on a simplified model designed with regard for the general principles of integration of vehicles of the class considered. The tests were performed in a wind tunnel over the Mach and Reynolds number ranges 0.6 ≤ M ≤ 4 and 6.3 × 106 ≤ Re ≤ 16 × 106, respectively. Balance testing was carried out, the pressure distributions over the vehicle surface were measured, and the flowfields on the model surface were photographed. The effects of mounting a nacelle and contouring the internal duct are considered. The effect of the corrections on the duct flow in the absence of jet modeling is estimated. The results obtained can be used as a basis for developing the aerodynamic configurations of integral-layout flight vehicles, for forming their thrust and aerodynamic parameters under full-scale flight conditions, and for testing computation methods.  相似文献   
105.
Centrifugal spinning, a recently developed approach for ultra‐fine fiber production, has attracted much attention as compared with the electrospinning, due to its high yield, no solution polarity and high‐voltage electrostatic field requirements, etc. In this study, the jet formation process and spinning parameters on jet path are explored and compared in nozzle‐ and nozzle‐less centrifugal spinning systems. For nozzle‐less centrifugal spinning, fingers are formed at the front of thin liquid film due to the theory of Rayleigh–Taylor instability. We find that the lower solution concentration and higher rotational speed favor the formation of thinner and longer fingers. Then, the critical angular velocity and initial jet velocity for nozzle‐/nozzle‐less centrifugal spinning are obtained in accordance with the balance of centrifugal force, viscous force, and surface tension. When jet leaves the spinneret, it will undergo a series of motions including necking and whipping processes, and then, a steady spiral jet path is formed with its radius getting tighter. Finally, we experimentally study the effect of rotational speed and solution concentration on jet path, which shows that the higher rotational speed results in a larger radius of jet path while the solution concentration has little effect on it. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1547–1559  相似文献   
106.
This paper presents a numerical analysis of the steady boundary-layer flow of a Reiner–Philippoff fluid induced by a 90° stretching wedge in a variable free stream. The governing partial differential equations are converted into a set of two ordinary differential equations by the use of a similarity transformation. The flow is therefore governed by a stretching velocity parameter λ and two non-Newtonian fluid parameters γ and μ0. The variation of the skin friction, as well as other flow characteristics, as a function of the governing parameters is presented graphically and tabulated. A stability analysis has also been performed for this self-similar flow based on linear disturbances to the steady similarity solutions. The results presented in this paper reveal that there are no multiple (dual) solutions for the present problem and the unique solution is stable.  相似文献   
107.
An improved constant volume cycle(CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine(PDRE).Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26.When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.  相似文献   
108.
The effervescent atomization from an industrial Coker feed nozzle is compared for two different gas densities (air and mixed gas of 81.4 vol.% helium/18.6 vol.% nitrogen) at equivalent operating temperatures. The application is to observe the similarity of lab tests using air at 20 °C to the industrial process using steam at 300-400 °C. The effects of operating conditions, such as gas to liquid mass ratio, mixing pressure and void fraction on the flow regime, bubble size, and droplet size distribution were also examined in this study. The experiments were performed using mixtures of water with air or mixed gas, which resulted in gas to liquid mass ratios ranging from 1% to 4%.Stroboscopic back scattered imagery (SBSI) indicates that the average bubble size inside the nozzle conduit is similar when air and water are used as the process fluids, when compared to the case when mixed gas and water are used as the process fluids. Under similar conditions, the Phase Doppler Particle Anemometer (PDPA) data indicate that the droplet size in the spray is similar when using either mixed gas or air as the atomization gas.Experimental results obtained by high-speed video shadowgraphy (HSVS) indicate that the flow pattern inside the nozzle feeding conduit was slug flow with a tendency to attain annular flow with increased air to liquid mass ratios. Thus, from the experimental results it is evident that the smaller molecular weight of the mixed gas versus air (8.4 versus 29) does not significantly reduce the bubble (<±10% difference) and droplet size (<±1.5% difference), indicating a weak dependence of the gas phase density on two-phase atomization. This confirms that laboratory experiments on effervescent nozzles using air have reliable similarity to systems that use high temperature steam for the gas phase.  相似文献   
109.
基于速度势理论,利用复数变量边界元法对二维楔形体常速入水冲击的时域解进行了数值研究。以相似解作为数值计算的初始条件,采用时域解射流线性近似处理方法,利用复数变量边界元法进行求解,以减少计算量和数值误差。深入讨论了扩展坐标系求时域解、射流处理、网格划分和网格更新等关键技术。最后数值计算了不同斜升角楔形体入水时的自由液面隆起、射流飞溅和压力分布,经与相似解结果作比较,自由液面隆起轮廓基本吻合,而压力分布更符合实际情况,从而证明了模型及分析方法的正确性。  相似文献   
110.
We study the motion of isentropic gas in nozzles. This is a major subject in fluid dynamics. In fact, the nozzle is utilized to increase the thrust of rocket engines. Moreover, the nozzle flow is closely related to astrophysics. These phenomena are governed by the compressible Euler equations, which are one of crucial equations in inhomogeneous conservation laws.In this paper, we consider its unsteady flow and devote to proving the global existence and stability of solutions to the Cauchy problem for the general nozzle. The theorem has been proved in Tsuge (2013). However, this result is limited to small data. Our aim in the present paper is to remove this restriction, that is, we consider large data. Although the subject is important in Mathematics, Physics and engineering, it remained open for a long time. The problem seems to rely on a bounded estimate of approximate solutions, because we have only method to investigate the behavior with respect to the time variable. To solve this, we first introduce a generalized invariant region. Compared with the existing ones, its upper and lower bounds are extended constants to functions of the space variable. However, we cannot apply the new invariant region to the traditional difference method. Therefore, we invent the modified Godunov scheme. The approximate solutions consist of some functions corresponding to the upper and lower bounds of the invariant regions. These methods enable us to investigate the behavior of approximate solutions with respect to the space variable. The ideas are also applicable to other nonlinear problems involving similar difficulties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号