首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22567篇
  免费   3536篇
  国内免费   1981篇
化学   14653篇
晶体学   539篇
力学   1556篇
综合类   201篇
数学   1033篇
物理学   10102篇
  2024年   28篇
  2023年   151篇
  2022年   375篇
  2021年   455篇
  2020年   618篇
  2019年   633篇
  2018年   628篇
  2017年   759篇
  2016年   982篇
  2015年   914篇
  2014年   985篇
  2013年   2340篇
  2012年   1320篇
  2011年   1392篇
  2010年   1154篇
  2009年   1260篇
  2008年   1294篇
  2007年   1300篇
  2006年   1241篇
  2005年   1104篇
  2004年   1119篇
  2003年   964篇
  2002年   1080篇
  2001年   736篇
  2000年   749篇
  1999年   626篇
  1998年   530篇
  1997年   435篇
  1996年   390篇
  1995年   411篇
  1994年   331篇
  1993年   280篇
  1992年   252篇
  1991年   176篇
  1990年   167篇
  1989年   127篇
  1988年   130篇
  1987年   112篇
  1986年   101篇
  1985年   87篇
  1984年   83篇
  1983年   38篇
  1982年   58篇
  1981年   30篇
  1980年   34篇
  1979年   38篇
  1978年   12篇
  1976年   7篇
  1973年   17篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Using the phase field crystal approach, the crystallization process within the liquid–solid coexistence region is investigated for a square lattice on an atomic scale. Two competing growth modes, i.e., the diffusion-controlled growth through long-range atomic migration in liquid and the diffusionless growth through local atom rearrangement, which give rise to two completely different crystallization behaviors, are compared. In the diffusion-controlled regime, the interface migrates in a layerwise manner, leading to a gradual change of crystal morphology from truncated square to four-fold symmetric dendrite with the increase of driving force. For the diffusionless growth mode, a single crystal with no significant density change occupies the whole system at a faster rate while exhibiting a small growth anisotropy. The competition between these two modes is also discussed from the key input of the phase field crystal model: the correlation function.  相似文献   
992.
Increasing hydrophilicity of hydrophobic membrane is one of the strategies to improve its antifouling performance. Herein we report a procedure of reactive-vapor induced phase separation to prepare an N-vinyl pyrrolidone (NVP) modified poly(vinylidene fluoride) (PVDF) membrane to improve its hydrophilicity. PVDF solution containing NVP monomer was cast in ammonia water vapor atmosphere to prepare the modified membrane. During the process, PVDF was dehydrofluorinated by the reactive vapor of ammonia water to generate double bond of FC═CH, and then NVP was grafted. The degree of grafting modification and the microstructure evolution of the membrane were studied by adjusting the amount of NVP addition. A possible mechanism of membrane formation from crystallization gelling to non-crystallization gelling has been proposed to understand the morphology change from nodular sphere to bi-continuous microstructure with fibril matrix. It has been found that rising the degree of modification has changed the polymorph of PVDF from β to α crystalline phase, as well as turned the hydrophobic PVDF membrane into hydrophilic. Moreover, the modified membrane displayed obvious reduction in bovine serum albumin adsorption, suggesting improvement in anti-fouling performance. Therefore, our work provides an easy strategy to prepare hydrophilic PVDF membrane, which may have promising potential applications.  相似文献   
993.
The different contributions of the interfacial capacitance are identified in the case of passive materials or thin protective coatings deposited on the electrode surface. The method is based on a graphical analysis of the EIS results to determine both the passive-film capacitance in the high-frequency domain and the double-layer capacitance in the low-frequency domain. The proposed analysis is shown to be independent of the physicochemical origins of the frequency dispersion of the interfacial capacitances which results, from an analysis point of view of the experimental results, in the use of a constant-phase element However, for a correct evaluation of the thin-film properties such as its thickness, the high-frequency data must be corrected for the double-layer contribution. In particular, it is shown that if the double-layer capacitance gives a frequency-dispersed response, it is necessary to correct the high-frequency part for the double-layer constant-phase elements. This is first demonstrated on synthetic data and then used for the determination of the thickness of thin oxide film formed on Al in neutral pH solution.  相似文献   
994.
ABSTRACT

Blue phase liquid crystals are soft 3D photonic crystals in which the liquid crystal molecules self-assemble to form a cubic structure with lattice spacing of a few hundred nanometers resulting in selective reflection of colours in the visible spectrum. The corresponding wavelength or the ‘photonic band gap’ can be tuned using various external stimuli such as thermal, electric, magnetic and optical fields. Here, we report efficient tuning of photonic band gap by utilising the combination of electric and optical fields in a blue phase liquid crystalline system. The studies indicate that the chirality of the medium has a direct bearing on the direction of the wavelength shift and the extent of the photonic band gap tunability. More importantly, the synergistic effect of the two fields helps in reversible tuning of the band gap.  相似文献   
995.
The generalized thermoelasticity theory based upon the Green and Naghdi model III of thermoelasticity as well as the Eringen's nonlocal elasticity model is used to study the propagation of harmonic plane waves in a nonlocal thermoelastic medium. We found two sets of coupled longitudinal waves, which are dispersive in nature and experience attenuation. In addition to the coupled waves, there also exists one independent vertically shear-type wave, which is dispersive but experiences no attenuation. All these waves are found to be influenced by the elastic nonlocality parameter. Furthermore, the shear-type wave is found to face a critical frequency, while the coupled longitudinal waves may face critical frequencies conditionally. The problem of reflection of the thermoelastic waves at the stress-free insulated and isothermal boundary of a homogeneous, isotropic nonlocal thermoelastic half-space has also been investigated. The formulae for various reflection coefficients and their respective energy ratios are determined in various cases. For a particular material, the effects of the angular frequency and the elastic nonlocal parameter have been shown on phase speeds and the attenuation coefficients of the propagating waves. The effect of the elastic nonlocality on the reflection coefficients and the energy ratios has been observed and depicted graphically. Finally, analysis of the various results has been interpreted.  相似文献   
996.
Poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (PEO–POSS) mixed with lithium bis(trifluoromethanesulfonyl)imide salt is a nanostructured hybrid organic–inorganic block copolymer electrolyte that may enable lithium metal batteries. The synthesis and characteristics of three PEO–POSS block copolymer electrolytes which only differ by their POSS silica cage substituents (ethyl, isobutyl, and isooctyl) is reported. Changing the POSS monomer structure results in differences in both thermodynamics and ion transport. All three neat polymers exhibit lamellar morphologies. Adding salt results in the formation of a disordered window which closes and gives way to lamellae at higher salt concentrations. The width of disordered window decreases with increasing length of the POSS alkyl chain substituent from ethyl to isobutyl and is absent in the isooctyl sample. Rheological measurements demonstrate good mechanical rigidity when compared with similar all-organic block copolymers. While salt diffusion coefficient and current ratio are unaffected by substituent length, ionic conductivity increases as the length of the alkyl chain substituent decreases: the ethyl substituent is optimal for ion transport. This is surprising because conventional wisdom suggests that ion transport occurs primarily in the PEO-rich domains, that is, ion transport should be unaffected by substituent length after accounting for the minor change in conducting phase volume fraction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2020 © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 363–371  相似文献   
997.
ABSTRACT

The compound Ca3Co2O6 undergoes a transition into a spin-density wave (SDW) state near 24?K. Below ~10?K, this unstable SDW state coexists with a nearly- degenerate commensurate antiferromagnetic state as well as short-range magnetic order. Clear signatures of this strong magnetic disorder have been observed in the response of entropy to changing magnetic field and temperature. We performed a calorimetry study of Ca3Co2O6 and Ca3Co1.9Zn0.1O6 in order to compare their entropic responses at low temperature. Our results for Ca3Co2O6 reveal that ΔS(T, H)?≡?S(T, H)?S(T, H?=?0) increases as either temperature or magnetic field increase. In contrast, ΔS data for Ca3Co1.9Zn0.1O6 were relatively unresponsive to changes in temperature or field, suggesting that Zn substitution may reduce the low-temperature magnetic disorder observed in Ca3Co2O6. These results are discussed within the context of two cases (Ca3Co2O6 under applied pressure and Ca2.75R0.25Co2O6 (R?=?Dy, Lu)) in which a single magnetic ground state is stabilised.  相似文献   
998.
宽线固体核磁共振氢谱(1H NMR)是一种研究半晶高分子相结构的经典方法.本文以半晶聚乙烯的宽线固体1H NMR谱为例,探讨了通过Gaussian/Sinc、Gaussian和Lorentzian函数组合对宽线固体1H NMR谱图进行拟合的方案,并根据半晶聚乙烯的相结构成分对拟合得到的各信号成分进行归属.并在此基础上探讨了各个相结构中分子链运动与信号线型的相关性,以及利用宽线固体1H NMR谱测量半晶高分子结晶度存在的困难.  相似文献   
999.
常用的氧化物负载金属催化剂通常在水相中制备,且在使用前常常需要经过煅烧. 因此,氧化物载体表面的水合和脱水过程对于负载型金属催化剂的真实建模至关重要. 通过第一性原理分子动力学模拟,本文考察了温和温度下无水单斜氧化锆(111)表面在显式溶剂水中的演化. 在模拟过程中,所有的双重配位桥位氧位点很快被溶剂水质子化,形成酸性羟基(HOL),并在锆原子上留下碱性羟基(HO*). 这些碱性羟基(HO*)可以与表面未解离的吸附水分子(H2O*$)进行活跃的质子交换,进而在表面自由扩散. 在273 K到373 K的温度范围下,第一性原理分子动力学水相模拟可以得到一种较为确定的、有代表性的平衡水合单斜氧化锆(111)表面,其表面锆原子上覆盖度(θ)为0.75. 随后,为了模拟低于800 K的温和煅烧温度下的表面脱水过程,本文使用密度泛函理论计算了表面水分子的逐步脱附自由能. 通过获得表面的脱水相图,总结了不同煅烧温度下有代表性的、部分水合的单斜氧化锆(111)表面(0.25≤θ<0.75). 这些水合单斜氧化锆(111)表面具有重要的理论意义,可以方便快捷地被应用于氧化锆催化剂及氧化锆负载金属催化剂的真实建模与模拟.  相似文献   
1000.
In a previous study (Stahl and Bredow, Chem. Phys. Lett. 2018, 695, 28–33), we have studied structural, energetic, and electronic properties of two vanadium dioxide VO2 polymorphs with modified global and range-separated hybrid functionals. Since hybrid methods are computationally demanding, we evaluate the computationally more efficient DFT + U method in the present study. We assessed the widely used Dudarev PBE + U approach with a literature value of the effective Hubbard parameter Ueff = 3.4 eV. We compared the PBE + U results for the two VO2 polymorphs with our previous results, a self-consistent hybrid functional sc-PBE0, and the meta-GGA functional SCAN. It was found that the PBE + U method yields a strongly distorted monoclinic phase and does not reproduce the metal-to-insulator transition of VO2 correctly, even with modified values of Ueff. On the other hand, sc-PBE0 and SCAN describe the relative stability and the electronic structure of both polymorphs correctly and also provide reasonable lattice parameters. The functional SCAN yields the optimal balance between computational efficiency and accuracy. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号