首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5652篇
  免费   417篇
  国内免费   263篇
化学   1648篇
晶体学   32篇
力学   2422篇
综合类   22篇
数学   882篇
物理学   1326篇
  2024年   6篇
  2023年   75篇
  2022年   102篇
  2021年   97篇
  2020年   134篇
  2019年   114篇
  2018年   125篇
  2017年   152篇
  2016年   196篇
  2015年   142篇
  2014年   198篇
  2013年   350篇
  2012年   286篇
  2011年   328篇
  2010年   263篇
  2009年   332篇
  2008年   304篇
  2007年   304篇
  2006年   266篇
  2005年   320篇
  2004年   218篇
  2003年   228篇
  2002年   200篇
  2001年   168篇
  2000年   139篇
  1999年   120篇
  1998年   111篇
  1997年   111篇
  1996年   91篇
  1995年   117篇
  1994年   86篇
  1993年   84篇
  1992年   53篇
  1991年   71篇
  1990年   51篇
  1989年   44篇
  1988年   64篇
  1987年   53篇
  1986年   54篇
  1985年   39篇
  1984年   30篇
  1983年   14篇
  1982年   44篇
  1981年   15篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1971年   4篇
  1970年   2篇
  1957年   2篇
排序方式: 共有6332条查询结果,搜索用时 15 毫秒
91.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   
92.
A novel scheme for pressure fluctuations in turbulent flows is developed. The pressure fluctuations are sensitive parameter in some of the fluid phenomena. In the computational methods and modeling turbulence flow, the pressure fluctuations are eliminated after averaging of the Navier-Stokes equations, and only average pressure could be calculated. In this research, the Reynolds-averaged Navier-Stokes equations are computed using SIMPLE method. The Reynolds stress transport model (RSTM) is used to determine the Reynolds stresses and the flow details. The velocity fluctuations are simulated using the Kraichnan model. The Poisson equation for the pressure fluctuations is obtained by taking the divergence of the incompressible momentum equation and algebraic operations, and this equation is numerically solved by finite difference method. The effects of Reynolds number on the pressure fluctuations are studied.  相似文献   
93.
We report the development of a dual‐mode mass‐directed supercritical fluid chromatography and reversed‐phase liquid chromatography purification system. The addition of a third pump allows for flexible mobile phase control between the two techniques, and enables operation of either chromatography mode within minutes by activation of a set of switching valves on a single system. Software control, fluidic pathways, interface to the mass spectrometer, and fraction collection have been modified for compatibility between both separation methods. The conditioning solvent and tuning parameters for the mass spectrometer were adjusted to achieve an ideal signal trace in either mode with good linearity (r2 > 0.970) over a range of concentrations and minimal noise for accurate peak detection and isolation. The registration success rate is 90% and overall sample recovery for either technique is 80?90%. Combining two orthogonal separation and purification modes in one single system has improved the purification throughput of complex mixtures and has been a valuable, cost‐saving tool in our laboratory.  相似文献   
94.
Separation of microparticle in viscoelastic fluid is highly required in the field of biology and clinical medicine. For instance, the separation of the target cell from blood is an important prerequisite step for the drug screening and design. The microfluidic device is an efficient way to achieve the separation of the microparticle in the viscoelastic fluid. However, the existing microfluidic methods often have some limitations, including the requirement of the long channel length, the labeling process, and the low throughput. In this work, based on the elastic-inertial effect in the viscoelastic fluid, a new separation method is proposed where a gradually contracted microchannel is designed to efficiently adjust the forces exerted on the particle, eventually achieving the high-efficiency separation of different sized particles in a short channel length and at a high throughput. In addition, the separation of WBCs and RBCs is also validated in the present device. The effect of the flow rate, the fluid property, and the channel geometry on the particle separation is systematically investigated by the experiment. With the advantage of small footprint, simple structure, high throughput, and high efficiency, the present microfluidic device could be utilized in the biological and clinical fields, such as the cell analysis and disease diagnosis.  相似文献   
95.
Considering the significance of non-Newtonian fluid usage in manufacturing such as molten plastics, polymeric materials, pulps, and so on, significant efforts have been made to investigate the phenomenon of non-Newtonian fluids. In this article the influences of heat and mass transfer on non-Newtonian Walter's B fluid flow over uppermost catalytic surface of a paraboloid is encountered. An elasticity of the fluid layer is considered in the freestream together with heat source/sink and has the tendency to cause heat flow in the fluid saturated domain. The flow problem of two-dimensional Walter's B fluid is represented using Law of conservation of mass, momentum, heat, and concentration along with thermal and solutal chemical reactive boundary conditions. The governing equations are non-linear partial differential equation and are non-dimensionalized by employing stream function and similarity transformation. The final dimensionless equations yielded are coupled non-linear ordinary differential equations. Furthermore, shooting technique along with RK-4th order method is used to get the numerical results. Graphs and tables are modeled by using MATLAB software to check the effects of Walter's B parameter, Chemical reaction parameter and Thickness parameter on temperature, velocity, and concentration profiles. Tabular analysis shows the results of some physical parameters like skin friction coefficient, Nusselt number and Sherwood number due to the variation of Walter's B parameter, thickness parameter and chemical reactive parameter.  相似文献   
96.
Cinnarizine is a weak base, which can produce supersaturation and precipitation during gastrointestinal transit, affecting its absorption in vivo. Therefore, it is necessary to investigate whether the oral bioavailability of cinnarizine can be improved after co-administration with precipitation inhibitors or not. In order to evaluate the pharmacokinetic behavior of cinnarizine in rats, a simple, rapid, sensitive, and environmentally friendly supercritical fluid chromatography-tandem mass spectrometric method was established and validated. In this method, flunarizine, a structural analogue of cinnarizine, was selected as the internal standard, and cinnarizine was extracted from rat plasma using evaporation-free liquid–liquid extraction method. The analytes were separated on a Torus 1-AA column (3.0 mm × 100 mm, 1.7 μm) within 2.0 min, using a gradient elution procedure. The transitions of cinnarizine and flunarizine were m/z 369.1 → 167.1 and m/z 405.1 → 203.1, respectively. Cinnarizine showed good linear correlation in the range of 1–500 ng/ml with a lower limit of quantification of 1 ng/ml. The intra- and interday precision and accuracy of all quality control samples were within ±15%. This high-throughput, accurate, sensitive, and reproducible method has been successfully applied to study the effects of the precipitation inhibitor cinnarizine on the pharmacokinetics in rats.  相似文献   
97.
In the present work, the influence of porosity and boron on shear thickening behavior of hybrid mesoporous silica has been studied. Three different levels of boron modification were performed by varying the molar composition of boric acid viz., 1.5 mmol, 2.5 mmol, and 3.5 mmol in a co-condensation approach. The incorporation of boron in mesoporous silica network was confirmed by various techniques such as Fourier transform infra-red (FTIR), and 11B solid- state nuclear magnetic resonance (NMR) spectroscopy. The morphology and particle size were confirmed by using scanning and transmission electron microscopy. To evaluate the effect of boron and porosity on the shear thickening behavior, dispersions were prepared from mesoporous boron- modified silica (MSiB), control mesoporous silica (MSi), non-porous boron-modified silica (SiB), and control non-porous silica (Si) in polyethylene glycol. The shear thickening behavior was studied using steady shear rheology. The dispersion prepared from different loadings of synthesized MSiB containing 1.5 mmol boron showed more than 16 times increase in viscosity (657.7 Pa.s) compared to that of MSi (39.2 Pa.s) at a fairly low volume fraction (φ = 0.15) of silica. It is expected that the highly ordered mesoporous architecture of hybrid silica has improved the interaction between the particle and the dispersing medium through hydrogen bonding. The porous morphology of the hybrid mesoporous silica as well as the incorporation of boron in the silica network favors the formation of a frictional contact network, and a transition from continuous shear thickening (CST) to discontinuous shear thickening (DST) behavior was observed. Therefore, silica prepared via incorporation of boron as well as porosity can be material of interest in variety of applications, for example, soft body armors, sporting goods, and shear thickening electrolytes for high impact resistant batteries.  相似文献   
98.
The aim of this research was to provide crucial and useful data about the selection of the optimization criteria of supercritical carbon dioxide extraction of alfalfa at a quarter-technical plant. The correlation between more general output, including total phenolics and flavonoids content, and a more specified composition of polar constituents was extensively studied. In all alfalfa extracts, polar bioactive constituents were analyzed by both spectrometric (general output) and chromatographic (detailed output) analyses. Eight specific phenolic acids and nine flavonoids were determined. The most dominant were salicylic acid (221.41 µg g−1), ferulic acid (119.73 µg g−1), quercetin (2.23 µg g−1), and apigenin (2.60 µg g−1). For all seventeen analyzed compounds, response surface methodology and analysis of variance were used to provide the optimal conditions of supercritical fluid extraction for each individual constituent. The obtained data have shown that eight of those compounds have a similar range of optimal process parameters, being significantly analogous for optimization based on total flavonoid content.  相似文献   
99.
Nan Xiang  Silin Wang  Zhonghua Ni 《Electrophoresis》2021,42(21-22):2256-2263
Elastic-inertial focusing has attracted increasing interest in recent years due to the three-dimensional (3D) single-train focusing ability it offers. However, multi-train focusing, instead of single-train focusing, was observed in viscoelastic fluids with low elasticity as a result of the competition between inertia effect and viscoelasticity effect. To address this issue, we employed the secondary flow to facilitate single-train elastic-inertial focusing in low elasticity viscoelastic fluids. A three-section contraction-expansion channel was designed to induce the secondary flow to pinch the multiplex focusing trains into a single one exactly at the channel centerline. After demonstrating the focusing process and mechanism in our device, we systematically explored and discussed the effects of particle diameter, operational flow rate, polymer concentration, and channel dimension on particle focusing performances. Our device enables single-train focusing of particles in viscoelastic fluids with low elasticity, and offers advantages of planar single-layer structure, and sheathless, external-field free operation.  相似文献   
100.
张黎  张洁  陈刚  杨乃旺 《化学研究》2014,(4):423-427
为了进一步优化木质素磺酸盐作为钻井液处理剂的效能,利用其与甲醛的羟甲基化反应制备了羟甲基化木质素磺酸盐;采用红外光谱仪、X射线粉末衍射仪、扫描电镜等分析了其结构;测定了改性前后的木质素磺酸盐对钻井液流变性、降滤失性、黏土水化膨胀抑制性等性能的影响.结果显示,改性后的羟甲基化木质素磺酸盐的整体结构变化不大,但羟基数量增加,与水的相溶性增强.与木质素磺酸盐相比,羟甲基化木质素磺酸盐在室温下对基浆有较强的提黏作用,经180℃高温老化后降黏、降滤失作用有所增强,形成的泥饼厚度降低,对黏土水化膨胀的抑制作用增强.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号