首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   116篇
  国内免费   187篇
化学   994篇
晶体学   14篇
力学   4篇
综合类   5篇
物理学   113篇
  2024年   2篇
  2023年   13篇
  2022年   20篇
  2021年   28篇
  2020年   41篇
  2019年   29篇
  2018年   29篇
  2017年   31篇
  2016年   30篇
  2015年   35篇
  2014年   41篇
  2013年   70篇
  2012年   57篇
  2011年   41篇
  2010年   48篇
  2009年   35篇
  2008年   40篇
  2007年   60篇
  2006年   40篇
  2005年   51篇
  2004年   42篇
  2003年   56篇
  2002年   51篇
  2001年   27篇
  2000年   25篇
  1999年   18篇
  1998年   22篇
  1997年   22篇
  1996年   22篇
  1995年   26篇
  1994年   22篇
  1993年   17篇
  1992年   13篇
  1991年   6篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1973年   3篇
排序方式: 共有1130条查询结果,搜索用时 15 毫秒
21.
Reaction of the disulfide [HpicanS](2) (HpicanS is the carboxamide based on picolinate (pic) and o-mercaptoaniline (anS); the [] brackets are used to denote disulfides) with [VOCl(2)(thf)(2)] leads to reductive scission of the disulfide bond and formation of the mixed-valence (V(IV)/V(V)) complex anion [(OVpicanS)(2)mu-O](-) (1), with the dianionic ligand coordinating through the pyridine-N atom, the deprotonated amide-N atom, and thiophenolate-S atom. Reductive cleavage of the SbondS bond is also observed as [VCl(2)(tmeda)(2)] (tmeda=tetramethylethylenediamine) is treated with the disulfides [HsalanS](2) or [HvananS](2) (HsalanS and HvananS are the Schiff bases formed between o-mercaptoaniline and salicylaldehyde (Hsal) or vanillin (Hvan), respectively), yielding the V(III) complexes [VCl(tmeda)(salanS)] (2 a), or [VCl(tmeda)(vananS)] (2 b). The disulfide bond remains intact in the aerial reaction between [HsalanS](2) and [VCl(3)(thf)(3)] to yield the V(V) complex [VOCl[salanS](2)] (3), where (salanS)(2-) coordinates through the two phenolate and one of the imine functions. The S-S bond is also preserved as [VO(van)(2)] or [VO(nap)(2)] (Hnap=2-hydroxynaphthalene-1-carbaldehyde) is treated with bis(2-aminophenyl)disulfide, [anS](2), a reaction which is accompanied by condensation of the aldehyde and the diamine, and complexation of the resulting bis(Schiff bases) [HvananS](2) or [HnapanS](2) to form the complexes [VO[vananS](2)] (4 a) or [VO[napanS](2)] (4 b). In 4 a and 4 b, the phenolate and imine functions, and presumably also one of the disulfide-S atoms, coordinate to V(IV). 2-Mercaptophenyl-2'-pyridinecarboxamide (H(2)picanS) retains its identity in the presence of V(III); reaction between [VCl(3)(thf)(3)] and H(2)picanS yields [V[picanS](2)](-) (5). The dithiophenolate 2,6-bis(mercaptophenylthio)dimethylpyridine (6 a) is oxidized, mediated by VO(2+), to the bis(disulfide) octathiadiaza-cyclo-hexaeicosane 6 b. The relevance of these reactions for the speciation of vanadium under physiological conditions is addressed. [HNEt(3)]-1.0.5 NEt(3,) 3.3 CH(2)Cl(2), [HsalanS](2), [HNEt(3)]-5, and 6 b.4 THF have been characterized by X-ray diffraction analysis.  相似文献   
22.
Two new arsenic–vanadium clusters, [Co(2,2- bpy)3]2[As8V14O42(H2O)] · 3H2O (1), [2,2-bpy][Ni(2,2-bpy)3]2[As8V14O42(H2O)] · 3H2O (2) (2,2-bpy=2,2-bipyridine), have been hydrothermally synthesized and characterized by IR, elemental analysis, UV–VIS, EPR, TGA, XPS, and single crystal X-ray diffraction analysis. Crystal data: 1, triclinic, P1, a=14.368(3) Å, b=16.753(3) Å, c=24.632(5) Å, =94.15(3)°, =93.16(3)°, =113.05(3)°, Z=2; 2, monoclinic, P21/c, a= 30.2150(4) Å, b=14.0690(3) Å, c=26.0536(3) Å, =106.8960(10)°, Z=4. X-ray crystallographic studies showed that crystals 1 and 2 are both composed of discrete cluster anion [As8V14O42(H2O)]4– and transition metal coordination complexes [M(2,2-bpy)3]2+ (M=Co or Ni). Interestingly, compound 2 contains another neutral organic space filler of 2,2-bpy. To the best of our knowledge, compounds 1 and 2 are the first examples of structurally characterized vanadium/2,2-bpy/arsenate polyoxometallates.  相似文献   
23.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   
24.
Optical Switching in VO2 Thin Films   总被引:5,自引:0,他引:5  
Vanadium dioxide thin films have been deposited from vanadium alkoxides VO(OR)3. An amorphous film is formed that transforms into crystalline VO2 upon heating at 500°C under a reducing atmosphere. Optically transparent VO2 thin films are then obtained that exhibit both electrical and optical switching around 70°C. The switching temperature together with the shape of the hysteresis loop can be modified by doping VO2 films with foreign cations. Doped MxVO2 (M = W6+, Nb5+, Ti4+, Cr3+ or Al3+) thin films have been prepared under the same conditions by mixing the vanadium alkoxide and a metal salt in an alcoholic solution. The switching temperature decreases when the film is doped with high-valent cations (W6+) and increases with low-valent cations (Al3+, Cr3+). The transition temperature first decreases and then increases when TiIV is added to the VO2 film while the width of the hysteresis loop is significantly reduced.  相似文献   
25.
Phosphane, Phosphite, Phosphido, Complexes of Vanadium(V) Complex formation of tert-butylimidovanadium(V)trichloride ( 1 ) with phosphanes und phosphites has been studied. Syntheses of phosphidovanadium(V) compounds tC4H9N?VCp(NHtC4H9)[P(SiMe3)2] and tC4H9N?VCp(NiProp2)(PR2) (R?SiMe3, Ph) are described starting from the corresponding chlorovanadium(V) complexes. The reaction of 1 with silver hexafluorophosphate yields a bis(fluoro)phosphidovanadium(IV complex [(μ-PF2)2V2Cl2)(NtC4H9)2]; as primary intermediate product of the unknown redox reaction a cationic vanadium(V) complex [tC4H9N?VCl2 · PPh3]+PF6? has been isolated. 1 reacts with an excess of diisopropylamine forming tC4H9N?V(NiProp2)Cl2 ( 16 ); in addition the following diisopropylamido-tert-butylimidovanadium(V) compounds tC4H9N?VCp(NiProp2)Cl ( 3 ) and tC4H9N?V(NiProp2)X2 (X?CH2CMe3, OtC4H9, CH3COO) has been prepared. All compounds obtained are characterized by 1H, 51V, 31P NMR spectroscopy. The X-ray diffraction analysis of 16 and 3 indicate a planar coordination sphere of the amido nitrogen atom.  相似文献   
26.
环己烷催化氧化制取顺酐和醋酸的催化剂研究   总被引:3,自引:0,他引:3  
为研究气态环己烷催化氧化制取顺酐及醋酸的新反应,采取不同的方法制备了系列固体VPO催化剂.借助XRD、FT-IR对催化剂进行了主体晶相确定,用氧化还原滴定方法测定了不同晶相催化剂中钒的平均氧化数.结合催化反应的活性评价,发现催化剂主体晶相、结晶度、活化气氛和催化剂的V4+/V5+比均对目标反应的催化活性产生影响,5种催化剂中以(VO)2P2O7晶相催化剂的活性为最高.  相似文献   
27.
Vanadium pentoxide (V2O5) exhibits high theoretical capacities when used as a cathode in lithium ion batteries (LIBs), but its application is limited by its structural instability as well as its low lithium and electronic conductivities. A porous composite of V2O5-SnO2/carbon nanotubes (CNTs) was prepared by a hydrothermal method and followed by thermal treatment. The small particles of V2O5, their porous structure and the coexistence of SnO2 and CNTs can all facilitate the diffusion rates of the electrons and lithium ions. Electrochemical impedance spectra indicated higher ionic and electric conductivities, as compared to commercial V2O5. The V2O5-SnO2/CNTs composite gave a reversible discharge capacity of 198 mAh·g?1 at the voltage range of 2.05–4.0 V, measured at a current rate of 200 mA·g?1, while that of the commercial V2O5 was only 88 mAh·g?1, demonstrating that the porous V2O5-SnO2/CNTs composite is a promising candidate for high-performance lithium secondary batteries.  相似文献   
28.
A vanadyl phosphate containing a new member of tancoite-like single chain, (DAPH2)[VIVO(HPO4)2]·xH20 (x ≈ 0.2, DAP = 1,3-diaminopropane, C3H10N2), has been synthesized under hydro(solvo)thermal conditions. It crystallizes in orthorhombic space group P21212 (No. 18) with a = 7.1730(14), b = 19.252(4), c = 8.6557(17) A, Z= 4, V= 1195.3(4)A3, C3H14.38N2P2VO9.19, Mr = 338.47, Dc = 1.881 g/cm3,μ(MoKa) = 1.138 mm-1 and F(000) = 692. The final full-matrix least-squares refinement converged to R = 0.0408, wR = 0.1046 for 2498 observed reflections with I 〉 2σ(I) and R = 0.0456 and wR = 0.1080 for all data (2750) and S = 1.001. Its one-dimensional 1 structure consists of tancoite-like ∞1 {vIVO(HPO4)2}2- single chains surrounded by DAPH22+ ions and water molecules. The single chain is built from trans-corner-sharing octahedral {VIV= O…VIV} backbone loop-branched by HPO4 groups like staple forming a new member of tancoite single chain. Due to the special coordination of VIVO6, the ∞1 {VO(HPO4)2-} chain adopts a larger M-O-M angle (V-O-V = 135°) than those of tancoite chains reported before. The corner-sharing linear {VIV = O…VIV} chain structure also leads to a one-dimensional weak antiferromagnetic interaction at low temperature. The magnetic measurements confirm the 4+ valence state of vanadium. IR and TG results of the title compound are also discussed.  相似文献   
29.
The highly Z‐selective asymmetric conjugate addition of 3‐substituted oxindoles to alkynyl carbonyl compounds has been developed by using scandium complexes of chiral N,N′‐dioxides under mild conditions. The thermodynamically unstable Z‐olefin derivatives were obtained in excellent yields and high enantiomeric and geometric control. The catalyst was also found to be effective in the asymmetric acetylenic substitution reaction of 3‐substituted oxindoles, giving excellent enantioselectivities.  相似文献   
30.
Multivalent ion storage and aqueous electrochemical systems continue to build interest for energy application. The Zn-ion system with 2 electron transfer and an ideal metal anode is a strong candidate but is still at the early stage of development. Using both in situ near-edge (XANES) and X-ray absorption fine structure spectroscopy, EXAFS, a nanostructured cathode material, CaxV2O5-H2O (CVO), was probed at the V-K absorption edge. This operando study reveals the local electronic and geometric structure changes for CVO during galvanostatic cycling as the active material in an aqueous Zn-ion cell. The XANES data provides a fine resolution to track the evolution of the vanadium oxidative state and near-neighbor coordination sphere showing subtle shifts and delocalized charge. The Zn-ion influence on the V-K absorption edge is visualized using a difference technique called Δμ. Coupled with theoretical calculations and modelling, the extended region extracted local bonding information further confirms excellent electronic and structural reversibility of this vanadium oxide bronze in an aqueous Zn-ion electrochemical cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号