首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14838篇
  免费   1332篇
  国内免费   4417篇
化学   14990篇
晶体学   422篇
力学   609篇
综合类   142篇
数学   1855篇
物理学   2569篇
  2024年   18篇
  2023年   137篇
  2022年   258篇
  2021年   368篇
  2020年   432篇
  2019年   340篇
  2018年   360篇
  2017年   446篇
  2016年   499篇
  2015年   415篇
  2014年   667篇
  2013年   1134篇
  2012年   1446篇
  2011年   814篇
  2010年   677篇
  2009年   942篇
  2008年   1056篇
  2007年   1148篇
  2006年   1043篇
  2005年   1027篇
  2004年   952篇
  2003年   755篇
  2002年   653篇
  2001年   527篇
  2000年   518篇
  1999年   488篇
  1998年   425篇
  1997年   375篇
  1996年   358篇
  1995年   354篇
  1994年   315篇
  1993年   225篇
  1992年   280篇
  1991年   206篇
  1990年   166篇
  1989年   121篇
  1988年   97篇
  1987年   68篇
  1986年   78篇
  1985年   56篇
  1984年   45篇
  1983年   23篇
  1982年   34篇
  1981年   28篇
  1980年   36篇
  1979年   34篇
  1978年   32篇
  1977年   27篇
  1976年   24篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The β‐diketonate‐based achiral polymer P‐1 could be synthesized by the polymerization of 3,7‐dibromo‐2,8‐dimethoxy‐5,5‐dioctyl‐5H‐dibenzo[b,d]silole ( M1 ) with (Z)?1,3‐bis(4‐ethynylphenyl)?3‐hydroxyprop‐en‐1‐one ( M2 ) via typical Sonogashira coupling reaction. The β‐diketonate unit in the main chain backbone of P‐1 can further coordinate with Eu(TTA)x [TTA? = 4,4,4‐trifluoro‐1‐(thiophen‐2‐yl)butane‐1,3‐dionate anion, X = 1, 2, 3] to afford corresponding Eu(III)‐containing polymer complexes. The resulting achiral polymer complex P‐2 (X = 2) can exhibit strong circular dichroism (CD) response toward both N‐Boc‐l and d‐ proline enantiomers. The CD signal was preliminarily attributed to coordination induction between chiral N‐Boc‐proline and the Eu(III) complex moiety. The linear regression analysis of CD sensing shows a good agreement between the magnitude of molar ellipticity and concentration of chiral N‐Boc‐l or d‐ proline, which indicates this kind Eu(III)‐containing achiral polymer complex can be used as a chiral probe for enantioselective recognition of N‐Boc‐l or d‐ proline enantiomers based on Cotton effect of CD spectra. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3080–3086  相似文献   
982.
In this paper, we construct and analyze a level‐dependent coarse grid correction scheme for indefinite Helmholtz problems. This adapted multigrid (MG) method is capable of solving the Helmholtz equation on the finest grid using a series of MG cycles with a grid‐dependent complex shift, leading to a stable correction scheme on all levels. It is rigorously shown that the adaptation of the complex shift throughout the MG cycle maintains the functionality of the two‐grid correction scheme, as no smooth modes are amplified in or added to the error. In addition, a sufficiently smoothing relaxation scheme should be applied to ensure damping of the oscillatory error components. Numerical experiments on various benchmark problems show the method to be competitive with or even outperform the current state‐of‐the‐art MG‐preconditioned Krylov methods, for example, complex shifted Laplacian preconditioned flexible GMRES. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
983.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   
984.
The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth of carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature induced surface energy and its consequential stress state is investigated and found to be rather negligible. Furthermore, it is shown that the nonlinear character of the van der Waals interactions has to be considered to obtain maximum layer numbers comparable to experimental observations. The proposed model gives insight into mechanisms which are assumed to limit the size of carbon onions and can serve as basis for further investigations, e.g., of the formation of nanodiamonds in the center of carbon onions.  相似文献   
985.
In this comment letter we point out that the main result of the recent paper [Xu Y, Zhou W, Fang J, Sun W. Topology identification and adaptive synchronization of uncertain complex networks with adaptive double scaling functions. Commun Nonlinear Sci Numer Simul 2011;16(18):3337-43] has certain errors. The mistakes are corrected and a correct version is presented in this letter. We further indicate that a sufficient condition has been neglected in a series of articles discussing the same topic of network topology identification; hence we hope this letter can help clarify some unclear concepts about this topic.  相似文献   
986.
987.
The electronic absorption spectra of crystals of the title componds were recorded and the experimental results were explained quantitatively with the ligand field theory and the radial wave function of bound Cu(II) cation. With these spactra, the range of magnetic interactions between two Cu(II) ions of the title compounds are discussed.  相似文献   
988.
New fluorescent heterocyclic ligands were synthesized by the reaction of 8‐(4‐chlorophenyl)‐3‐alkyl‐3H‐imidazo[4',5':3,4]benzo [1,2‐c]isoxazol‐5‐amine with p‐hydroxybenzaldehyde and p‐chlorobenzaldehyde in good yields. The coordination ability of the ligands with Fe3+ ion was examined in an aqueous metanolic solution. Schiff base ligands and their metal complexes were characterized by elemental analyses, IR, UV–vis, mass, and NMR spectra. The optical properties of the compounds were investigated and the results showed that the fluorescence of all compounds is intense and their obtained emission quantum yields are around 0.15 – 0.53. Optimized geometries and assignment of the IR bands and NMR chemical shifts of the new complexes were also computed by using density functional theory (DFT) methods. The DFT‐calculated vibrational wavenumbers and NMR chemical shifts are in good agreement with the experimental values, confirming suitability of the optimized geometries for Fe(III) complexes. Also, the 3D‐distribution map for HOMO and LUMO of the compounds were obtained. The new compounds showed potent antibacterial activity and their antibacterial activity (MIC) against Gram‐positive and Gram‐negative bacterial species were also determined. Results of antibacterial test revealed that coordination of ligands to Fe(III) leads to improvement in the antibacterial activity.  相似文献   
989.
Two ruthenium complexes containing a new ligand phipz (phipz = 2‐(1,10‐phenanthroline)‐1H‐imidazo[4,5‐b]phenazine) were designed and synthesized. These complexes were found to inhibit the DNA supercoiled relaxation mediated by topoisomerase I (topo I), cleave DNA under irradiation and bind to calf thymus DNA through intercalative mode. Furthermore, complex 2 shows higher photocleavage activity, topo I inhibition activity and DNA affinity than complex 1 . Additionally, introduction of phenazine unit may be the reason that two complexes exhibit DNA ‘light switch’ behavior. The present work shows that two complexes might be potential as new DNA ‘light switches’, DNA photocleavers and topo I inhibitors.  相似文献   
990.
Novel cobalt complex of 4‐amino‐N‐(6‐chloropyridazin‐3‐yl)benzene sulfonamide (sulfachloropyridazine) has been synthesized and characterized by elemental analysis, FT‐IR spectroscopy and magnetic susceptibility (VSM). Cobalt complex of Sulfachloropyridazine (Co‐SCP) crystallized in monoclinic space group P21/n with Z = 4. The structure is solved by direct method and refined to R = 0.099 for 4720 reflections with I ?4σ(I). The results of FT‐IR spectra suggest the binding of cobalt atom to the sulfonamide ligand which is in agreement with the crystal structure determination. In crystal structure, molecule is linked via, C‐H … π, C‐Cl … π and π … π intermolecular interactions. The computational studies like the optimization energy and root means square deviation compare with single crystal structure, frontier molecular orbital (Homo‐Lumo energy) and binding energy of the Co‐SCP has been carried out using DFT/B3LYP level of theory in gaseous phase. Hirshfeld surfaces and the 2D‐fingerprint analysis are performed to study the nature of interactions and their measurable contributions towards crystal packing. The interaction of the complex with DNA is investigated using viscosity measurement and absorption titration studies. The result shows the complex bind to DNA with intercalative mode with high DNA‐binding constant (Kb). Also, in vivo and in vitro cytotoxic studies are performed using S. pombe cells and brine shrimp lethality bioassay. DNA‐cleavage study shows better cleaving ability of the complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号