首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5833篇
  免费   545篇
  国内免费   405篇
化学   1177篇
晶体学   61篇
力学   3520篇
综合类   75篇
数学   511篇
物理学   1439篇
  2024年   8篇
  2023年   29篇
  2022年   200篇
  2021年   231篇
  2020年   165篇
  2019年   103篇
  2018年   119篇
  2017年   162篇
  2016年   225篇
  2015年   165篇
  2014年   212篇
  2013年   353篇
  2012年   209篇
  2011年   285篇
  2010年   227篇
  2009年   282篇
  2008年   290篇
  2007年   345篇
  2006年   351篇
  2005年   303篇
  2004年   296篇
  2003年   250篇
  2002年   188篇
  2001年   208篇
  2000年   216篇
  1999年   180篇
  1998年   145篇
  1997年   134篇
  1996年   135篇
  1995年   115篇
  1994年   90篇
  1993年   94篇
  1992年   84篇
  1991年   75篇
  1990年   49篇
  1989年   40篇
  1988年   43篇
  1987年   42篇
  1986年   32篇
  1985年   22篇
  1984年   18篇
  1983年   10篇
  1982年   21篇
  1981年   19篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
  1957年   2篇
排序方式: 共有6783条查询结果,搜索用时 15 毫秒
81.
In this paper, the three-dimensional (3D) interfacial fracture is analyzed in a one-dimensional (1D) hexagonal quasicrystal (QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle. Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation. The singularity of stresses near the crack front is investigated, and the stress intensity factors (SIFs) as well as energy release rates (ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.  相似文献   
82.
In this article we studied the evolution of thermomechanical properties of a polyester‐urethane coating during degradation under different degradation conditions, i.e., aerobic and anaerobic conditions with and without dry/wet cycling during degradation. Dynamic mechanical and thermal analyses show that under aerobic conditions the coatings become stiffer and more brittle in the glassy state. This stiffening is probably due to the increase in the amount of hydrogen bonding and the formation of oxidized groups which increase the polarity of the material and enhance the interactions of the polymer segments. However, oxidation reactions result in a considerable decrease in cross‐link density and stiffness in the rubbery state. Both changes, in the glassy and rubbery states, give rise to development of internal stresses. These stresses increase as the degradation process proceeds. Nevertheless, for samples exposed to anaerobic conditions, the stiffness remains constant in the glassy state and the cross‐link density slightly increases as a result of degradation. This reconfirms the dominance of the effect of oxidation reactions on the mechanical failure of the coatings. Oxygen permeation measurements show a more‐or‐less time‐independent diffusion coefficient and a gradual decrease in solubility of oxygen as a function of exposure time. This results in a slight decrease in oxygen permeation (mainly in the early stage of the degradation) as degradation proceeds. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 659–671  相似文献   
83.
将Si衬底GaN基LED外延薄膜经晶圆键合、去硅衬底等工艺制作成垂直结构GaN基LED薄膜芯片,并对其进行不同温度的连续退火,通过高分辨X射线衍射(HRXRD)研究了连续退火过程中GaN薄膜芯片的应力变化。研究发现:垂直结构LED薄膜芯片在160~180℃下退火应力释放明显,200℃时应力释放充分,GaN的晶格常数接近标准值。继续升温应力不再发生明显变化,GaN薄膜的晶格常数只在标准晶格常数值附近波动。扫描电子显微镜给出的bonding层中Ag-In合金情况很好地解释了薄膜芯片应力的变化。  相似文献   
84.
We revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle–Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving–Kirkwood–Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.  相似文献   
85.
Depression and anxiety disorders are widespread diseases, and they belong to the leading causes of disability and greatest burdens on healthcare systems worldwide. It is expected that the numbers will dramatically rise during the COVID-19 pandemic. Established medications are not sufficient to adequately treat depression and are not available for everyone. Plants from traditional medicine may be promising alternatives to treat depressive symptoms. The model organism Chaenorhabditis elegans was used to assess the stress reducing effects of methanol/dichlormethane extracts from plants used in traditional medicine. After initial screening for antioxidant activity, nine extracts were selected for in vivo testing in oxidative stress, heat stress, and osmotic stress assays. Additionally, anti-aging properties were evaluated in lifespan assay. The extracts from Acanthopanax senticosus, Campsis grandiflora, Centella asiatica, Corydalis yanhusuo, Dan Zhi, Houttuynia cordata, Psoralea corylifolia, Valeriana officinalis, and Withania somnifera showed antioxidant activity of more than 15 Trolox equivalents per mg extract. The extracts significantly lowered ROS in mutants, increased resistance to heat stress and osmotic stress, and the extended lifespan of the nematodes. The plant extracts tested showed promising results in increasing stress resistance in the nematode model. Further analyses are needed, in order to unravel underlying mechanisms and transfer results to humans.  相似文献   
86.
Polyphenols and omega-3 polyunsaturated fatty acids from fish oils, i.e., eicosapentaenoic and docosahexaenoic acids, are well-recognized nutraceuticals, and their single antioxidant and anti-inflammatory properties have been demonstrated in several studies found in the literature. It has been reported that the combination of these nutraceuticals can lead to three-fold increases in glutathione peroxidase activity, two-fold increases in plasma antioxidant capacity, decreases of 50–100% in lipid peroxidation, protein carbonylation, and urinary 8-isoprotanes, as well as 50–200% attenuation of common inflammation biomarkers, among other effects, as compared to their individual capacities. Therefore, the adequate combination of those bioactive food compounds and their single properties should offer a powerful tool for the design of successfully nutritional interventions for the prevention and palliation of a plethora of human metabolic diseases, frequently diet-induced, whose etiology and progression are characterized by redox homeostasis disturbances and a low-grade of chronic inflammation. However, the certain mechanisms behind their biological activities, in vivo interaction (both between them and other food compounds), and their optimal doses and consumption are not well-known yet. Therefore, we review here the recent evidence accumulated during the last decade about the cooperative action between polyphenols and fish oils against diet-related metabolic alterations, focusing on the mechanisms and pathways described and the effects reported. The final objective is to provide useful information for strategies for personalized nutrition based on these nutraceuticals.  相似文献   
87.
This review discusses the state of the art, challenges, and perspectives in recent applications of nitroaromatics and nitroheteroaromatics, which are redox-bio-activated drugs or leads, in Medicinal Chemistry. It deals mainly with the electrochemical approach toward the electron transfer-based molecular mechanisms of drug action, drug design, estimation and measurement of redox potentials, correlation of physicochemical and pharmacological data, and electrochemical studies of the main representatives of nitro-containing prodrugs, along with approaches to combat their toxicity issues, aiming at a better therapeutic profile. Electrochemical investigation plays essential roles, being strategic in the design and discovery of potential medicines.  相似文献   
88.
Silicone rubber samples with gradually changing pore sizes within the range of 70–610 μm are produced using an improved spacer method. The samples are scanned using an X‐ray computed tomography to evaluate their graded structure as compared to uniform rubber. A compressive test reveals that graded porous silicone rubber has characteristic stress–strain curves whose slope changes within a specific strain range depending on the porous structure. Analysis results of local strain based on a digital image correlation of the graded porous silicone rubber under compression demonstrate that the characteristic stress–strain properties are caused by shifts in the main deformation region in the graded structure. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1033–1042  相似文献   
89.
Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1(PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm2. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing fractional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mechanism for most cell rolling events through P-selectin.  相似文献   
90.
Based on the Modified Couple Stress Theory,a functionally graded micro-beam under electrostatic forces is studied.The FGM micro-beam is made of two materials and material properties vary continuously along the beam thickness according to a power-law.Dynamic and static pull-in voltages are obtained and it is shown that the static and dynamic pull-in voltages for some materials cannot be obtained using classic theories and components of couple stress must be taken into account.In addition,it is shown that the values of pull-in voltages depend on the variation through the thickness of the volume fractions of the two constituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号