首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2924篇
  免费   841篇
  国内免费   431篇
化学   1515篇
晶体学   48篇
力学   180篇
综合类   44篇
数学   290篇
物理学   2119篇
  2024年   12篇
  2023年   52篇
  2022年   93篇
  2021年   80篇
  2020年   84篇
  2019年   79篇
  2018年   105篇
  2017年   146篇
  2016年   133篇
  2015年   138篇
  2014年   254篇
  2013年   225篇
  2012年   250篇
  2011年   275篇
  2010年   214篇
  2009年   201篇
  2008年   203篇
  2007年   233篇
  2006年   198篇
  2005年   195篇
  2004年   145篇
  2003年   135篇
  2002年   90篇
  2001年   84篇
  2000年   63篇
  1999年   53篇
  1998年   55篇
  1997年   56篇
  1996年   51篇
  1995年   51篇
  1994年   38篇
  1993年   24篇
  1992年   33篇
  1991年   19篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   15篇
  1986年   9篇
  1985年   14篇
  1984年   11篇
  1983年   9篇
  1982年   14篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有4196条查询结果,搜索用时 15 毫秒
151.
多探测器拼接成像系统实时图像配准   总被引:1,自引:0,他引:1  
依据已设计完成的基于同心球透镜的四镜头多探测器阵列拼接成像系统,对该系统图像拼接配准过程所采用的特征检测提取、特征向量匹配与筛选、空间变换模型参数估计等算法进行了研究。首先,采用Fast-Hessian检测子提取参考图像和待配准图像的特征点,并生成加速鲁棒特征(SURF)描述向量。接着,采用快速近似最近邻(FANN)逼近搜索算法获得初始的匹配点对,并对匹配点对特征向量的欧式距离进行排序。然后,参照成像系统光学设计参数设定合理的阈值,筛选并保留下较好的匹配点对。最后,提出了一种改进的渐进式抽样一致性(IPROSAC)算法对空间变换矩阵模型进行参数估计,从而得到参考图像与待配准图像的空间几何变换关系。实验结果表明:该算法对图像尺寸、旋转和光照变化都具有一定的不变性,特征匹配时间为0.542 s,配准变换时间0.031 s,配准误差精度小于0.1 pixel,可以满足成像系统关于图像配准实时性和准确性的要求,具有一定的工程应用价值。  相似文献   
152.
利用电化学湿法印章技术在氧化铟锡(ITO)导电玻璃上制备AuPd合金和Au的双组分阵列图案. 采用具有微浮雕图案的琼脂糖印章存储足够多的溶液,并通过控制电沉积的时间来控制图案厚度. 应用场发射扫描电子显微镜(FE-SEM),X射线能谱分析(EDX)和原子力显微镜(AFM)分别对ITO表面上的AuPd合金和Au的形貌和组分进行表征,并通过循环伏安(CV)技术和扫描电化学显微镜(SECM)研究比较了Au和AuPd合金的催化活性. 利用扫描电化学显微镜(SECM)的针尖产生-基底收集(TG-SC)模式和氧化还原竞争(RC)模式,发现Au电极对二茂铁甲醇氧化物(FcMeOH+)电催化还原能力高于AuPd合金电极,而在AuPd合金上催化还原H2O2的能力显著高于Au.  相似文献   
153.
在电场的作用下对石墨棒进行电化学剥离,使其表面形成相互平行排列,且垂直于石墨棒基底的二维(2D)石墨纳米片阵列(GNSA).然后通过阴极还原电沉积法制备Sn O2/石墨纳米片阵列(Sn O2/GNSA)复合电极.采用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)和傅里叶变换红外(FT-IR)光谱对其形貌和结构进行了表征.电化学测试表明该复合电极具有优异的超电容性能,在0.5 mol·L-1Li NO3电解质中,扫描速率为5 m V·s-1,电位窗口为1.4 V时,比电容达4015 F·m-2.由Sn O2/GNSA复合电极和相同电解质组装成的对称型超级电容器,在扫描速率为5 m V·s-1时,其电位窗口可增至1.8 V,能量密度达到0.41 Wh·m-2,循环5000圈后其比电容仍保持为初始比电容的81%.  相似文献   
154.
A powerful new strategy for the fabrication of high‐density RNA arrays is described. A high‐density DNA array is fabricated by standard photolithographic methods, the surface‐bound DNA molecules are enzymatically copied into their RNA complements from a surface‐bound RNA primer, and the DNA templates are enzymatically destroyed, leaving behind the desired RNA array. The strategy is compatible with 2′‐fluoro‐modified (2′F) ribonucleoside triphosphates (rNTPs), which may be included in the polymerase extension reaction to impart nuclease resistance and other desirable characteristics to the synthesized RNAs. The use and fidelity of the arrays are explored with DNA hybridization, DNAzyme cleavage, and nuclease digestion experiments.  相似文献   
155.
The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one in adhesives. The procedure involves a three‐phase hollow‐fiber liquid‐phase microextraction using a semipermeable polypropylene membrane, which contained 1‐octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF‐MS, where the identification of the compounds and the quantification values were confirmed.  相似文献   
156.
徐微微  龙泽荣  鹿毅  王吉德 《化学通报》2014,77(12):1157-1164
分子印迹阵列式传感器具有识别率高、选择性好、价格低廉等优点,受到研究者们的极大关注,已经在食品分析、环境分析、药物分析、临床诊断等研究领域中得到应用。分子印迹阵列式传感器是以分子印迹聚合物作为识别元素的集成化传感器,通过各传感单元对分析物响应后产生的特征图谱实现对目标化合物的识别,不仅可用于单一目标化合物的选择性识别,还可以用于多种目标化合物同时存在时的测定。分子印迹阵列式传感器的响应信号机制主要划分为光信号、质量敏感信号和电化学信号等。本文简要介绍了分子印迹技术的产生和发展,重点评述了基于三种信号机制的分子印迹阵列式传感器的研究进展,并展望了分子印迹阵列式传感器的应用前景和研究方向。  相似文献   
157.
The ordered assembly of molecules within a specific space of nanoscale, such as a surface, holds great promise in advanced micro-/nanostructure fabrication for various applications. Herein, we demonstrate the evanescent wave (EW)-guided organization of small molecules into a long-range ordered nanowire (NW) array. Experiment and simulation revealed that the orientation and periodicity of the NW array were feasibly regulated by altering the propagation direction and the wavelength of EW. The generality of this approach was demonstrated by using different molecule precursors. While existing studies on EW often took advantages of its near-field property for optical sensing, this work demonstrated the photochemical power of EW in the guided-assembly of small molecules for the first time. It also provides an enlightening avenue to periodic structure with fluorescence, promising for super-resolution microscopy and important devices applicable to optical and bio-related fields.  相似文献   
158.
A human brain is composed of a large number of interconnected neurons forming a neural network. To study the functional mechanism of the neural network, it is necessary to record the activity of individual neurons over a large area simultaneously. Brain-computer interface (BCI) refers to the connection established between the human/animal brain and computers/other electronic devices, which enables direct interaction between the brain and external devices. It plays an important role in understanding, protecting, and simulating the brain, especially in helping patients with neurological disorders to restore their impaired motor and sensory functions. Neural electrodes are electrophysiological devices that form the core of BCI, which convert neuronal electrical signals (carried by ions) into general electrical signals (carried by electrons). They can record or interfere with the state of neural activity. The Utah Electrode Array (UEA) designed by the University of Utah is a mainstream neural electrode fabricated by bulk micromachining. Its unique three-dimensional needle-like structure enables each electrode to obtain high spatiotemporal resolution and good insulation between each other. After implantation, the tip of each electrode affects only a small group of neurons around it even allowing to record the action potential of a single neuron. The availability of a large number of electrodes, high quality of signals, and long service life has made UEA the first choice for collecting neuronal signals. Moreover, UEA is the only implantable neural electrode that can record signals in the human cerebral cortex. This article mainly serves as an introduction to the construction, manufacturing process, and functioning of UEA, with a focus on the research progress in fabricating high-density electrode arrays, wireless neural interfaces, and optrode arrays using silicon, glass, and metal as that material of construction. We also discuss the surface modification techniques that can be used to reduce the electrode impedance, minimize the rejection by brain tissue, and improve the corrosion resistance of the electrode. In addition, we summarize the clinical applications where patients can control external devices and get sensory feedback by implanting UEA. Furthermore, we discuss the challenges faced by existing electrodes such as the difficulty in increasing electrode density, poor response of integrated wireless neural interface, and the problems of biocompatibility. To achieve stability and durability of the electrode, advancements in both material science and manufacturing technology are required. We hope that this review can broaden the scope of ideas for the development of UEA. The realization of a fully implantable neural microsystem can contribute to an improved understanding of the functional mechanisms of the neural network and treatment of neurological diseases.  相似文献   
159.
ABSTRACT

A short-focus microlens array using dielectric layer and inhomogeneous electric field over a homogeneous nematic liquid crystal (LC) layer is proposed. The top substrate has a planar indium tin oxide (ITO) electrode which is coated on the inner surface. The bottom substrate has strip ITO electrodes which are embedded in the dielectric layers. The inhomogeneous electric field generates a required gradient refractive index profile within the LC layer which, in turn, causes the focusing effect. Due to the thinner LC layer (15 μm), the spherical aberration should be negligible. Moreover, the fabrication process of the proposed microlens array can be easily carried out because of the layer-by-layer configuration. The simulation results show that the focal length of the LC microlens can be continuously tuned from infinity to 0.988 mm with the change of applied voltage.  相似文献   
160.
ABSTRACT

We propose an adaptive nematic liquid crystal (LC) lens array using a dielectric layer with low dielectric constant as resistive layer. With the resistive layer and periodic-arranged iridium tin oxide (ITO) electrodes, the vertical electric field across the LC layer varies linearly over the lens aperture is obtained in the voltage-on state. As a result, a centrosymmetric gradient refractive index profile within the LC layer is generated, which causes the focusing behaviour. As a result of the optimisation, a thin cell gap which greatly reduces the switching time of the LC lens array can be achieved in our design. The main advantages of the proposed LC lens array are in the comparatively low operating voltage, the flat substrate surface, the simple electrodes, and the uniform LC cell gap. The simulation results show that the focal length of the LC lens array can be tuned continuously from infinity to 3.99 mm by changing the applied voltage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号