首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   9篇
化学   69篇
物理学   13篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   10篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
Ubiquitination is one of the most utilized posttranslational modifications in eukaryotes and is involved in a wide range of cellular processes, but is mostly known as a signal for proteasomal degradation. Recently, it has become clear that the ubiquitin signal is far more complex and is dictated by the ubiquitin component and the substrate. The remarkable diversity of the ubiquitin signaling process has triggered an incredible amount of effort to investigate the role of ubiquitination on biological processes. However, despite more than three decades of studies, several important questions remain unanswered. A major hurdle is the inability to obtain homogeneous ubiquitin bioconjugates in sufficient amounts from cells or by application of the enzymatic machinery. Recent breakthroughs in chemical and semisynthetic strategies, however, offer solutions to these challenges. In this Review, we survey the fundamental biological aspects of the ubiquitin signal and present the emerging non-enzymatic approaches for overcoming these obstacles.  相似文献   
75.
76.
Protein SUMOylation modification conjugated with small ubiquitin‐like modifiers (SUMOs) is one kind of PTMs, which exerts comprehensive roles in cellular functions, including gene expression regulation, DNA repair, intracellular transport, stress responses, and tumorigenesis. With the development of the peptide enrichment approaches and MS technology, more than 6000 SUMOylated proteins and about 40 000 SUMO acceptor sites have been identified. In this review, we summarize several popular approaches that have been developed for the identification of SUMOylated proteins in human cells, and further compare their technical advantages and disadvantages. And we also introduce identification approaches of target proteins which are co‐modified by both SUMOylation and ubiquitylation. We highlight the emerging trends in the SUMOylation field as well. Especially, the advent of the clustered regularly interspaced short palindromic repeats/ Cas9 technique will facilitate the development of MS for SUMOylation identification.  相似文献   
77.
Analysis of amide proton temperature coefficients (deltasigma(HN)/DeltaT) in human ubiquitin shows their usefulness in indicating hydrogen bonds. The availability of a very accurate solution structure of ubiquitin enables the precise determination of hydrogen bonds and increases the reliability of the analysis of chemical shift temperature gradients. Values of deltasigma(HN)/DeltaT more positive than -4.6 ppb/K are very good indicators of hydrogen bonds. Additionally, a weak temperature dependence of non-hydrogen-bonded amides was observed for amide protons that are significantly shifted upfield. We observed that temperature gradients of amide protons involved in short hydrogen bonds are related to donor-acceptor distances.  相似文献   
78.
Triazole‐based deubiquitylase (DUB)‐resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain‐specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB‐resistant Ub probes is reported based on isopeptide‐N‐ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one‐pot, ubiquitin‐activating enzyme (E1)‐catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi‐milligram scale. Proteomic studies using label‐free quantitative (LFQ) MS indicated that the isopeptide‐N‐ethylated Ub probes may complement the triazole‐based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号