首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
  国内免费   19篇
化学   83篇
晶体学   3篇
力学   40篇
综合类   1篇
数学   1篇
物理学   21篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   9篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
排序方式: 共有149条查询结果,搜索用时 0 毫秒
111.
In this paper, two and three-dimensional clustering models are developed to characterize the effect of nano-particle clustering on toughening of nanocomposite ceramics. It is found that crack pinning toughens the nano-composite ceramics because a higher stress intensity factor is needed for crack to propagate around or to pull-out the nano-particle. The nano-particle along the grain boundary steers the crack into the matrix grain due to the strong cohesion between the nanoparticle and the matrix. Since the fracture resistance of the grain boundary is lower than that of the grain lattice, the higher the probability of transgranular fracture induced by nano-particles, the tougher is the nano-composite. However, both crack pinning and transgranular fracture are affected by nano-particle clustering. Nanoparticle clustering, which increases with increasing volume fraction of nano-particles, leads to reduction of both the strength and toughness of the nano-composite ceramics. The larger the size of the clustered particle, and the more defects it contains, the easier it is for the crack to pass through the clustered particle, which means that the nano-particle clustering can reduce toughening induced by crack pinning and transgranular fracture. The theoretical prediction, based on the combination of the three mechanisms of nano-particles, is in agreement with the experimental data. The project supported by the National Natural Science Foundation of China (19891180) and the Research Grants Council of the HKSAR, China(HKU7081/00E)  相似文献   
112.
In this study, the unique crystallization behavior of poly(ethylene oxide) (PEO) in polyoxymethylene (POM)/PEO crystalline/crystalline blends was examined in detail. This study was the first to report the typical fractionated crystallization of PEO in POM/PEO blends when PEO is fewer than 30 wt.%. The delayed crystallization temperature of PEO was confirmed at about 5°C to 14°C by using differential scanning calorimetry and perturbation–correlation moving‐window 2D correlation IR spectroscopy. Wide‐angle X‐ray diffraction indicates that no new crystal structures or co‐crystals were generated in POM/PEO. The statistical calculations of scanning electron microscopy photos show that the average diameter of PEO particles is 0.227 µm to 1.235 µm and that the number of small particles is as many as 109 magnitudes per cm3. Theory analysis establishes that the delayed crystallization of PEO is a heterogeneous nucleation process and not a homogeneous nucleation process. A significant toughening effect of PEO to POM was also observed. The impact strength of POM/PEO acquires a maximum of 10.5 kJ/m2 when PEO content is 5%. The impact strength of the blend increases by 78.0% compared with pure POM. To improve the toughening effect, the best particle size is established between 0.352 and 0.718 µm, with a PEO particle spacing of 0.351 µm to 0.323 µm. The number of corresponding particles was 0.887 × 109 per cm3 to 3.240 × 109 per cm3. A PEO toughening model for POM was proposed to provide a new and effective way to solve the problem of POM toughening. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
113.
增韧环氧树脂的微结构和力学性能的正电子湮没   总被引:2,自引:0,他引:2  
用正电子湮没方法(PALS)和动态力学分析(DMA)方法研究了增韧剂和温度对环氧树脂的自由体积和力学性能的影响.根据正电子素(o-Ps)湮没寿命τ3随温度的变化,玻璃化转变温度Tg和次级转变温度Tβ被确定.实验结果表明,在稀释环氧树脂基体中加入增韧剂会使样品中产生较强界面相互作用,并且明显地改变了材料的结构转变温度Tg和Tβ,使得增韧样品比稀释样品具有更高的玻璃化转变温度Tg.一个很有意义的发现是,低温下力学性能的改变明显地大于室温下力学性能的改变.文中从原子尺度自由体积特性和界面相互作用的角度探讨了温度对样品力学性能影响的机理.  相似文献   
114.
钇对陶瓷刀具材料Al2O3/TiCN的强韧化效应   总被引:6,自引:1,他引:5  
在已 研制的含烯土Al2O3/TiCN陶瓷刀具材料的基础上,采用SEM,TEM和能谱分析等方法探讨了Y的强韧化效应。稀土增强Al2O3/TiCN陶瓷刀具材料力学性能改善的原因在于,Y的添加能在一定程度上积聚杂质,W,Fe和Cr等,从而起到清洁界面、提高界面结合强度的作用。  相似文献   
115.
A reactive rubber obtained by isocyanation of hydroxyl-terminated polybutadiene was used as toughening agent for an unsaturated polyester resin. Both the isocyanation and the successive reaction between the modified rubber and the polyester were investigated by Fourier-transform infrared spectroscopy (FTIR). Fracture measurements at high and low strain rate were carried out on the cured materials to test their toughness. The failure mechanisms were established by morphological analysis of fractured surfaces, performed by scanning electron microscopy. © 1993 John Wiley & Sons, Inc.  相似文献   
116.
Nanocomposites of polymers and montmorillonite (MMT) represent a type of important hybrid material. However, unlike in some natural hybrid materials where much improved mechanical properties are achieved by an ordered assembly (layered, sheet-like or fibrous morphology) of complementary hard and soft components on nano- and microscopic scales, the exfoliated MMT nano-sheets are generally randomly dispersed in bulk polymeric matrices. In this paper we utilized a pressure-induced flow (PIF) field to orient MMT nano-sheets and generate stratified morphologies in polyamide 6 (PA6)/MMT nanocomposite bulk material. The toughness and tensile strength can be simultaneously increased. In particular, the impact strength increased up to 10 fold higher than the same material obtained by conventional processing methods. The mechanism for enhancement could be the confinement of crack propagations and the tortuous energy dissipating paths, which are attributed to the oriented MMT and the anisotropic hierarchical morphologies formed during PIF-processing.  相似文献   
117.
Toughened poly (butylene terephthalate) (PBT) with triglycidyl isocyanurate (TGIC)-filled poly (ethylene–octene) (POE) was prepared by melt reaction extrusion. For retarding the reaction extent between PBT and the epoxy component, the TGIC was first blended with POE to enwrap its reactive epoxy groups. Then, the TGIC-filled POE was used to melt blend with PBT. The Fourier transform infrared (FTIR) spectra showed that no other peaks appeared in the POE/TGIC specimens except for those originally existing in pure POE and TGIC. The rheological results further confirmed that no reaction occurred between the epoxy and the POE matrix. When the POE/TGIC was blended with PBT, a distinct increase of the viscosity suggested that the migration of the TGIC from POE to PBT during the melt processing induced chain extension reactions of PBT. The results obtained from DSC and DMA revealed that the chain extension of PBT induced by the reaction with TGIC restricted the mobility of PBT chains leading to a limitation of the recrystallization-remelting process and an increase of the glass transition temperature of PBT. The mechanical tests showed that the presence of TGIC in the POE phase distinctly improved the toughness of PBT. Compared to the case of a PBT/POE (80/20, wt%/wt%) blend, the elongation at break and impact strength of the system filled with 5 phr TGIC were increased more than three and six times, respectively.  相似文献   
118.
不饱和聚酯改性研究新进展   总被引:3,自引:0,他引:3  
综述了不饱和聚酯改性的研究进展。介绍了不饱和聚酯增韧的方法,如液体橡胶、弹性体共混增韧、化学结构改性、纳米复合材料。不饱和聚酯收缩率控制研究,包括聚醋酸乙烯酯、聚苯乙烯、嵌段共聚和无机填料等低收缩添加剂的影响,及新型低收缩不饱和聚酯的合成。讨论了含磷阻燃剂和无卤阻燃剂对不饱和聚酯的影响。  相似文献   
119.
SEBS及相容剂对回收PET的改性研究   总被引:8,自引:0,他引:8  
在回收聚对苯二甲酸乙二醇酯(rPET)中加入热塑性弹性体SEBS进行增韧,并通过相容剂乙烯-甲基丙烯酸缩水甘油酯接枝聚苯乙烯(EGMA-g-PS)增容rPET和SEBS.用哈克转矩流变仪进行反应表征,同时测试材料结晶性能、力学性能并观察样条微观结构以考察SEBS和相容剂对rPET的增韧和增容作用.结果表明,相容剂的环氧官能团与PET末端羧基发生反应,并且与SEBS有很好的物理相容性.SEBS与相容剂的加入可以降低rPET的结晶度和成核速率,并且提高缺口冲击强度159%.  相似文献   
120.
《先进技术聚合物》2018,29(1):565-574
In the current work, renewable resourced toughened epoxy blend has been developed using epoxidized linseed oil (ELO) and bio‐based crosslinker. Epoxidation of linseed oil was confirmed through FTIR and 1H NMR spectra. The ELO bio‐resin was blended at different compositions (10, 20, and 30 phr) with a petroleum‐based epoxy (DGEBA) as reactive diluent to reduce the viscosity for better processibility and cured with cardanol‐derived phenalkamine to overcome the brittleness. The flow behavior of the neat epoxy and modified bio‐epoxy resin blend systems was analyzed by Cross model at low and high shear rates. The tensile and impact behavior studies revealed that the toughened bio‐epoxy blend with 20 to 30 phr of ELO showed moderate stiffness with much higher elongation at break 7% to 13%. Incorporation of higher amount of ELO (20 to 30 phr) increases enthalpy of curing without affecting peak temperature of curing. The thermal degradation behavior of the ELO based blends exhibits similar trend as neat epoxy. The higher intensity or broadened loss tangent curve of bio‐epoxy blends revealed higher damping ability. FE‐SEM analysis showed a rough and rippled surface of bio‐based epoxy blends ensuring effective toughening. Reduced viscosity of resin due to maximum possible incorporation of bio‐resin and use of phenalkamine as curing agent leads to an eco‐friendly toughened epoxy and can be useful for specific coating and structural application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号