The occurrence of biologically active pharmaceuticals in aquatic environments raised the potential risks to aquatic species. Among these marketed biological active pharmaceuticals, it has been estimated that 40% of them target G-protein-coupled receptors (GPCRs). We have illustrated pharmaceutical activities of GPCR targeted pharmaceuticals in English and Japanese wastewater by the in vitro transforming growth factor-α (TGFα) shedding assay. However, as the most important producer and consumer of pharmaceuticals, the occurrence of GPCR targeted pharmaceuticals in China had remained unclear. In this study, we investigated the pharmaceutical activities of GPCR targeted pharmaceuticals in secondary effluents of Chinese wastewater treatment plants. We discovered antagonistic activities against angiotensin (AT1) receptor at up to 7.2 × 102 ng-valsartan-equivalent quantity/L in Chinese wastewater for the first time as well as agonistic activities against dopamine (D2) receptor. Furthermore, in parallel with the assay, we determined concentrations of GPCR targeted pharmaceuticals in target wastewater by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). Through the comparison of predicted antagonistic activities calculated by concentrations and potency values from the assay, we found that the measured antagonistic activities against AT1 receptor from the assay were higher than the predicted AT1 activities from valsartan, irbesartan, and losartan, indicating the potential existence of other unknown AT1 antagonists in wastewater. 相似文献
Low band gap D‐A conjugated PNs consisting of 2‐ethylhexyl cyclopentadithiophene co‐polymerized with 2,1,3‐benzothiadiazole (for nano‐PCPDTBT) or 2,1,3‐benzoselenadiazole (for nano‐PCPDTBSe) have been developed. The PNs are stable in aqueous media and showed no significant toxicity up to 1 mg · mL?1. Upon exposure to 808 nm light, the PNs generated temperatures above 50 °C. Photothermal ablation studies of the PNs with RKO and HCT116 colorectal cancer cells were performed. At concentrations above 100 µg · mL?1 for nano‐PCPDTBSe, cell viability was less than 20%, while at concentrations above 62 µg · mL?1 for nano‐PCPDTBT, cell viability was less than 10%. The results of this work demonstrate that low band gap D‐A conjugated polymers 1) can be formed into nanoparticles that are stable in aqueous media; 2) are non‐toxic until stimulated by IR light and 3) have a high photothermal efficiency.
A reactive template method was used to fabricate alginate‐based hydrogel microcapsules. The uniform and well‐dispersed hydrogel capsules have a high drug loading capacity. After they are coated by a folate‐linked lipid mixture on the surface, the capsules possess higher cell uptake efficiency by the molecule recognition between folate and the folate‐receptor overexpressed by the cancer cells. Moreover, in this bioconjugate, the lipid could remarkably reduce the release rate of hydrophilic doxorubicin from the hydrogel microcapsules and encapsulate the hydrophobic photosensitizer hypocrellin B. The biointerfaced capsules could be used as drug carriers for combined treatment against cancer cell proliferation in vitro; this was much more effective than chemotherapy or photodynamic therapy alone. 相似文献
In this paper we study a free boundary problem modelling tumor growth, proposed by A. Friedman in 2004. This free boundary problem involves a nonlinear second-order parabolic equation describing the diffusion of nutrient in the tumor, and three nonlinear first-order hyperbolic equations describing the evolution of proliferative cells, quiescent cells and dead cells, respectively. By applying Lp theory of parabolic equations, the characteristic theory of hyperbolic equations, and the Banach fixed point theorem, we prove that this problem has a unique global classical solution. 相似文献
Laryngeal framework surgery can change the position and tensionof the vocal folds safely without direct surgical intervention in the vocal fold proper. Some 23 years of experience with phonosurgery have proved its usefulness in treating dysphonia related to unilateral vocal fold paralysis, vocal fold atrophy, and pitch-related dysphonias. Meanwhile, much information about the mechanism of voice production has been obtained through intraoperative findings of voice and fiberscopic examination of the larynx . Based on such knowledge together with information obtained through model experiments, the human vocal organ was reconsidered mainly from the mechanical view point, and the roles of voice therapy and singing pedagogy were discussed in relation to phonosurgery. The vocal organ may not be an ideal musical organ and is rather vulnerable, but its potential is enormous. 相似文献
Conjugated polyelectrolytes (CPEs) are macromolecules with highly delocalized π‐conjugated backbones and charged side chains, which are unique types of active materials, with wide applications in optoelectronics, sensing, imaging, and therapy. By attaching specific groups (e.g., recognition elements, magnetic resonance (MR) contrast agents, gene carriers, and drugs) to the side chain or backbone of CPEs, functionalized CPEs have been developed and used for specific biological applications. In this account, we summarize the recent progress of functionalized CPEs with respect to their synthesis and biomedical applications. Future perspectives are also discussed at the end. 相似文献
Lanthanide‐doped upconversion nanoparticles (UCNPs) have attracted considerable attention for their application in biomedicine. Here, silica‐coated NaGdF4:Yb,Er/NaGdF4 nanoparticles with a tetrasubstituted carboxy aluminum phthalocyanine (AlC4Pc) photosensitizer covalently incorporated inside the silica shells were prepared and applied in the photodynamic therapy (PDT) and magnetic resonance imaging (MRI) of cancer cells. These UCNP@SiO2(AlC4Pc) nanoparticles were uniform in size, stable against photosensitizer leaching, and highly efficient in photogenerating cytotoxic singlet oxygen under near‐infrared (NIR) light. In vitro studies indicated that these nanoparticles could effectively kill cancer cells upon NIR irradiation. Moreover, the nanoparticles also demonstrated good MR contrast, both in aqueous solution and inside cells. This is the first time that NaGdF4:Yb,Er/NaGdF4 upconversion‐nanocrystal‐based multifunctional nanomaterials have been synthesized and applied in PDT. Our results show that these multifunctional nanoparticles are very promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering. 相似文献
The incorporation of cyclodextrins (CDs) to nonviral cationic polymer vectors is very attractive due to recent studies that report a clear improvement of their cytocompatibility and transfection efficiency. However, a systematic study on the influence of the CD derivatization is still lacking. In this work, the relevance of β‐CD permethylation has been addressed by preparing and evaluating two series of copolymers of the cationic N‐ethyl pyrrolidine methacrylamide (EPA) and styrenic units bearing pendant hydroxylated and permethylated β‐CDs (HCDSt and MeCDSt, respectively). For both cell lines, CDs permethylation shows a strong influence on plasmid DNA complexation, “in vitro” cytocompatibility and transfection efficiency of the resulting copolymers over two murine cell lines. While the incorporation of the hydroxylated CD moiety increased the cytotoxicity of the copolymers in comparison with their homopolycationic counterpart, the permethylated copolymers have shown full cytocompatibility as well as superior transfection efficiency than the controls. This behavior has been related to the different chemical nature of both units and tentatively to a different distribution of units along the polymeric chains. Cellular internalization analysis with fluorescent copolymers supports this behavior.
Exhaled breath condensate is a promising, non-invasive, diagnostic sample obtained by condensation of exhaled breath. Starting from a historical perspective of early attempts of breath testing towards the contemporary state-of-the-art breath analysis, this review article focuses mainly on the progress in determination of non-volatile compounds in exhaled breath condensate. The mechanisms by which the aerosols/droplets of non-volatile compounds are formed in the airways are discussed with methodological consequences for sampling. Dilution of respiratory droplets is a major problem for correct clinical interpretation of the measured data and there is an urgent need for standardization of EBC. This applies also for collection instrumentation and therefore various commercial and in-house built devices are described and compared with regard to their design, function and collection parameters. The analytical techniques and methods for determination of non-volatile compounds as potential markers of oxidative stress and lung inflammation are scrutinized with an emphasis on method suitability, sensitivity and appropriateness. The relevance of clinical findings for each group of possible non-volatile markers of selected pulmonary diseases and methodological recommendations with emphasis on interdisciplinary collaboration that is essential for future development into a fully validated clinical diagnostic tool are given. 相似文献