首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   93篇
  国内免费   106篇
化学   1352篇
晶体学   2篇
力学   9篇
综合类   6篇
数学   1篇
物理学   44篇
  2024年   1篇
  2022年   10篇
  2021年   29篇
  2020年   17篇
  2019年   29篇
  2018年   38篇
  2017年   26篇
  2016年   45篇
  2015年   35篇
  2014年   61篇
  2013年   164篇
  2012年   68篇
  2011年   51篇
  2010年   48篇
  2009年   66篇
  2008年   61篇
  2007年   88篇
  2006年   70篇
  2005年   65篇
  2004年   83篇
  2003年   55篇
  2002年   30篇
  2001年   27篇
  2000年   26篇
  1999年   33篇
  1998年   32篇
  1997年   25篇
  1996年   24篇
  1995年   21篇
  1994年   15篇
  1993年   11篇
  1992年   15篇
  1991年   5篇
  1990年   2篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   11篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有1414条查询结果,搜索用时 31 毫秒
101.
The safe use of lipid‐based drug delivery agents requires fast and sensitive qualitative and quantitative assessment of their cellular interactions. Many mass spectrometry (MS) based analytical platforms can achieve such task with varying capabilities. Therefore, four novel high‐throughput MS‐based quantitative methods were evaluated for the analysis of a small organic gene delivery agent: N,N‐bis(dimethylhexadecyl)‐1,3‐propane‐diammonium dibromide (G16‐3). Analysis utilized MS instruments that detect analytes using low‐resolution tandem MS (MS/MS) analysis (i.e. QTRAP or linear ion trap in this work) or high‐resolution MS analysis (i.e. time of flight (ToF) or Orbitrap). Our results indicate that the validated fast chromatography (FC)‐QTRAP‐MS/MS, FC‐ LTQ‐Orbitrap‐MS, desorption electrospray ionization‐collision‐induced dissociation (CID)‐MS/MS and matrix assisted laser desorption ionization‐ToF/ToF‐MS MS methods were superior in the area of method development and sample analysis time to a previously developed liquid chromatography (LC)‐CID‐MS/MS. To our knowledge, this is the first evaluation of the abilities of five MS‐based quantitative methods that target a single pharmaceutical analyte. Our findings indicate that, in comparison to conventional LC‐CID‐MS/MS, the new MS‐based methods resulted in a (1) substantial reduction in the analysis time, (2) reduction in the time required for method development and (3) production of either superior or comparable quantitative data. The four new high‐throughput MS methods, therefore, were faster, more efficient and less expensive than a conventional LC‐CID‐MS/MS for the quantification of the G16‐3 analyte within tissue culture. When applied to cellular lysate, no significant change in the concentration of G16‐3 gemini surfactant within PAM212 cells was observed between 5 and 53 h, suggesting the absence of any metabolism/excretion from PAM212 cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
102.
In the present paper, kinetics of alkaline degradation of well known drug, indomethacin (2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetic acid), was studied in presence of excess [NaOH]. The rate of hydrolysis of substrate was independent of the [indomethacin] though it increased linearly with increasing the hydroxide ion concentration with a positive slope, suggesting the following rate law: kobs = k1[OH]. Cationic surfactants having non-reactive ions (cetyltrimethylammonium bromide, CTAB and cetyltrimethylammonium sulfate (CTA)2SO4) first increased the rate constants at lower concentrations and then decreased it at higher concentrations while in case of the surfactant with reactive counterions (cetyltrimethylammonium hydroxide, CTAOH) the rate increases sharply at lower concentrations of surfactant until it reaches to a plateau in contrast to the appearance of maxima in case of CTAB and (CTA)2SO4. Anionic surfactant, sodium dodecyl sulfate (SDS), inhibited the reaction rate at all concentrations used in the study. Pseudophase ion-exchange model was used for analyzing the effect of cationic micelles while the inhibition by SDS micelles was fitted using the Menger–Portnoy model. The effect of salts (NaCl, NaBr and (CH3)4NBr) was also seen on the hydrolysis of indomethacin and it was found that all salts inhibited the rate of reaction. The inhibition followed the trend NaCl < NaBr < (CH3)4NBr.  相似文献   
103.
The self‐assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant‐like peptides into nanotube structures is reviewed. The modes of self‐assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.  相似文献   
104.
Porous titanium dioxide synthesized with a bicontinuous surfactant template is a promising method that leads to a high active surface area electrode. The template used is based on a water/isooctane/dioctyl sodium sulfosuccinate salt together with lecithin. Several parameters were varied during the synthesis to understand and optimize channel formation mechanisms. The material is patterned in stacked conical channels, widening towards the centre of the grains. The active surface area increased by 116 % when the concentration of alkoxide precursors was decreased and increased by 241 % when the template formation temperature was decreased to 10 °C. Increasing the oil phase viscosity tends to widen the pore aperture, thus decreasing the overall active surface area. Changing the phase proportions alters the microemulsion integrity and disrupts channel formation.  相似文献   
105.
Asymmetric gold‐catalyzed hydrocarboxylations are reported that show broad substrate scope. The hydrophobic effect associated with in situ‐formed aqueous nanomicelles gives good to excellent ee’s of product lactones. In‐flask product isolation, along with the recycling of the catalyst and the reaction medium, are combined to arrive at an especially environmentally friendly process.  相似文献   
106.
Multiple emulsions with an “onion” topology are useful vehicles for drug delivery, biochemical assays, and templating materials. They can be assembled by ternary liquid phase separation by microfluidics, but the control over their design is limited because the mechanism for their creation is unknown. Herein we show that phase separation occurs through self‐similar cycles of mass transfer, spinodal decomposition or nucleation, and coalescence into multiple layers. Mapping out the phase diagram shows a linear relationship between the diameters of concentric layers, the slope of which depends on the initial ternary composition and the molecular weight of the surfactant. These general rules quantitatively predict the number of droplet layers (multiplicity), which we used to devise self‐assembly routes for polymer capsules and liposomes. Moreover, we extended the technique to the assembly of lipid‐stabilized droplets with ordered internal structures.  相似文献   
107.
The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n‐alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge‐like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water‐like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen‐bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs.  相似文献   
108.
Ordered mesoporous metal–organic frameworks (mesoMOFs) were constructed with a uniform pore size up to about 10 nm and thick microporous walls, opening up the possibility for the mass diffusion of large-size molecules through crystalline MOFs. The synergistic effects based on triblock copolymer templates and the Hofmeister salting-in anions promote the nucleation of stable MOFs in aqueous phase and the in situ crystallization of MOFs around templates, rendering the generation of a microcrystal with periodically arranged large mesopores. The improved mass transfer benefiting from large-pore channels, together with robust microporous crystalline structure, endows them as an ideal nanoreactor for the highly efficient digestion of various biogenic proteins. This strategy could set a guideline for the rational design of new ordered large-pore mesoMOFs with a variety of compositions and functionalities and pave a way for their potential applications with biomacromolecules.  相似文献   
109.
In recent years, various functionalization strategies for transition‐metal dichalcogenides have been explored to tailor the properties of materials and to provide anchor points for the fabrication of hybrid structures. Herein, new insights into the role of the surfactant in functionalization reactions are described. Using the spontaneous reaction of WS2 with chloroauric acid as a model reaction, the regioselective formation of gold nanoparticles on WS2 is shown to be heavily dependent on the surfactant employed. A simple model is developed to explain the role of the chosen surfactant in this heterogeneous functionalization reaction. The surfactant coverage is identified as the crucial element that governs the dominant reaction pathway and therefore can severely alter the reaction outcome. This study shows the general importance of the surfactant choice and how detrimental or beneficial a certain surfactant can be to the desired functionalization.  相似文献   
110.
New siloxanyl-modified carbohydrate surfactants of the amide and glycoside type have been synthesized by coupling between defined as well as higher-molecular-weight siloxanes and carbohydrate structures via spacers of different lengths and hydrophilic power. Linear and branched monohydrogen di-, tri-, tetra- and penta-siloxanes and polyhydrogen siloxanes as well as mono- and di-saccharide lactone structures have been found to be good starting materials for the synthesis of amides, often in quantitative yield, whereas glycosides had to be prepared in low-yield multistep sequences including protection/deprotection steps. Selected strategies were applied to polysiloxanes yielding quantitatively a broad variety of carbohydrate-modified comb-like structures. The new substances were characterized by means of 13C NMR spectroscopy, GC, capillary GC, GC–MS coupling and elemental analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号